
Teaching Agile Software Development

through Lab Courses

Andreas Schroeder, Annabelle Klarl, Philip Mayer, Christian Kroiß

Institut für Informatik

Ludwig-Maximilians-Universität München

Munich, Germany

Abstract—With the days of the lone coder long gone, it is critical

in our education of young computer scientists to lay particular

emphasis on the “softer” spots of software development: How to

organize a development process, how to deal with teams of

software engineers with different skills and motivations, and how

to produce outstanding software despite hard deadlines and

(ideally) a 40-hour-week. In this paper, we report on the setup,

execution, and results of two software development labs with a

specific focus on agile methodologies conducted in 2010 and 2011

at our university. Not only are agile methods widespread in

practice today; with their focus on human interaction and work-

life balance, we believe that experiencing a full agile product

development cycle in the risk-free academic environment is a

benefit not only for our students’ technical skills, but to their

social skills as well.

I. INTRODUCTION

Technical topics such as data structures and algorithms,
software modeling, and programming are pervasive in today’s
computer sciences curricula, and rightly so. However, while
these topics are key to understanding the technical side of
software development, we believe that the human side – how to
deal with collaborative software development processes and
their need for self-organization, motivation, and work
coordination – can greatly benefit students in their transition to,
and success in, today’s job market.

A lab course specifically tailored to the use of a concrete
software development methodology – as opposed to just
modeling and programming – can address these shortcomings.
However, care must be taken to properly raise the attention of
students with a one-sided computer science background, who
are used to solving small algorithmic problems on their own, to
the issues arising in working as a team. In particular, it is
crucial for students to understand the importance of following a
real software development process – an ill-executed lab with a
development process gone wrong will only strengthen the all-
too-common view that “processes are just a waste of time”.

In the past years, we have experimented with different
software development processes and different software
products to be created by students in our labs. Of particular
interest are two issues which we have identified to be
especially detrimental to the success of the labs. Firstly,
academic instructors tend to introduce cutting-edge research
topics into their labs; mostly, this is done in the hope of
recruiting students or creating working prototypes. We feel that

in many cases these topics are too far removed from students’
experience, and thus require them to spend a lot of time on
getting up to speed on the topic – which is not the focus of a
software development lab. Secondly, while we do value
software modeling, “getting the model right” can consume so
much time that the inevitable coding part at the end of the
project is more like a hacking frenzy than a coordinated
development approach. This must be avoided at all costs.
Thirdly, the software development process in use must be
tailored to the time available, and the number of students
involved. Performing a generic RUP process with a small
number of students, for example, is not going to benefit
anyone.

Two years ago, we devised a new software development
lab to alleviate these problems. As we discuss in this paper, we
have chosen an agile software development approach to the
organization of our lab course – first, to avoid process bias;
second, to match the number of students; and third, to allow for
multiple feedback loops through the highly iterative nature of
agile processes. We have chosen Scrum [1] as the actual
process.

Furthermore, an particular emphasis was placed on an easy-
to-understand, fun challenge which was highly motivational for
students, yet offered many of the challenges of real-world
software products – especially, the requirements of producing a
clean architecture, code comprehensiveness, and rigorous
testing; all of which are very important problems, although
they are not algorithmically complex. We have chosen a
networked, multiplayer card game with a challenging graphical
user interface as the product.

Finally, we believe that the actual development process, not
the project setup, should be the focus of the lab. Therefore, we
have provided and introduced a proper tooling infrastructure
(based on Eclipse) and a product skeleton for the students to
build upon.

We were able to organize and manage two particularly
successful lab courses in the years 2010 and 2011. The selected
set of organizational, technical and product features seems well
balanced, and therefore it appears beneficial to share the
knowledge acquired.

II. LAB COURSE SETUP

In previous installments of the software development lab
course, we experienced severe problems: often, the courses

were characterized by a prolonged phase of “analysis
paralysis” (i.e. staying in the analysis phase indefinitely) that
blended into a hacking frenzy as the course deadline
approached. Both phases led to a rapid degradation of student
morale, focus and motivation, and several software
development lab courses ended with a fairly sub-optimal result
and learning outcome. We had to expect that as a result,
students primarily learned that (a) analysis is only delaying the
required coding phase in the end, and therefore must be
avoided if possible, and (b) that the project organization means
and infrastructure taught in the course are ineffective for
leading a project to success.

Our goal in the new setup of the software development lab
course is to improve on past installments, and to teach students
the cornerstones a software development endeavor requires to
be successful. For this, we decided to teach by example and
hence to provide a healthy and effective organizational frame.
In this frame, we rely on empirically validated and proven
techniques and technologies. Specifically, we rely on agile
processes, and state-of-the-art tooling support. At the same
time, we put less emphasis on the completeness of the product
that the student create during the lab course, and more
emphasis on the process of product creation and its continuous
improvement during the lab.

A. Product

In previous courses, the students got involved in cutting-
edge research topics and developed a product realizing
innovative, but not yet well-established ideas (e.g. a visual
scene rendering engine with an easy-programmable animation
interface). The students were therefore heavily occupied by
catching up with the research topics to understand, refine, and
realize the main concepts of the product. The scientific content
and its realization demanded a significant part of students'
attention.

To concentrate more on learning the main activities for
managing and carrying out software development, we instead
suggest developing a simple and easy to grasp product. The
product vision must be clear enough to fully explain and
understand it immediately, and must allow focusing on the
actual process of software development right from the
beginning. To keep motivation among the participating
students high, the product has to be appealing despite its
simplicity.

In our lab course, we decided to develop a simple card
game for software engineers called “The Bug is a Lie”. The
game is a parody of the way software is developed in industry
with a sarcastic view on the individual roles people take
(manager, honest developers, evil code monkeys, and
consultants) and how they, more often than not, work against
each other.

This card game is well suited for a lab course since (1) it is
easily and shortly explained, and (2) it is not only a virtual
game, but also has a real counterpart: prototype card decks can
be handed out, and attendants can directly get into touch with
the game. However, the game shines not only due to its
practicability, it also holds enough requirements and extensions
to challenge students. “The Bug is a Lie” is a multiplayer game

which requires the (3) implementation of a robust networking
layer, authentication facilities and a database layer. For
illustrating the game, the students have (4) to sketch a graphical
user interface according to customer’s needs. One of the most
convincing advantages of this card game is that it is (5) easily
decomposed into self-contained work packages or user stories.
After the initial setup of the basic functions and graphics, each
card or rule can be introduced separately (e.g. the coffee
machine card that allows to draw two cards). The game can
therefore be developed in iterations, each providing an
executable and “playable” fraction of the game. To highlight
the advantages of Scrum for a product with unclear and
changing requirements, user stories can be uncovered gradually
over the course of the lab. Additionally, the initial set of user
stories only serves as a rudimentary basis which has to be
revisited and extended after each iteration to account for the
current state of the product and the capabilities of the team.

Altogether, the game “The Bug is a Lie” is an easy-to-
understand card game which nevertheless poses enough
challenges to students. While the game logic is rather
straightforward to be implemented since it is given through
game rules, particularly realization of the networking layer and
graphical user interface calls for clean software development
including the design of an elaborate architecture,
comprehensive coding and rigorous testing.

B. Process Organization

The purpose of the lab course is to teach how to
successfully develop software. The main focus is therefore not
placed on the product, but on the introduction of an up-to-date
software development process and on the use of state-of-the-art
tools to organize and support this process. In the frame of the
introduced process the students learn how to balance
customer’s needs and development time, how to cope with
changes and how to organize themselves in a team.

Fig. 1. Scrum Process Loop

Since agile processes are a well-known approach to flexibly
cope with unanticipated changes in customer’s requirements,
the lab course is based on the agile process Scrum [1]. In
Scrum, the product is developed incrementally in time-framed
sprints of about four weeks (cf. Fig. 1) where the development
team is working on a fixed set of requirements – called sprint
backlog – producing a running part of the product. It is

important that the sprint backlog remains unchanged during the
sprint; not yet treated user stories, changes or extensions are
collected, but remain in a separate product backlog to be
introduced in future sprints. To monitor the progress during a
sprint and to make it visible to everyone, a burn-down chart
capturing the remaining efforts for the current sprint is created
and regularly updated.

One important property of the Scrum process is the velocity
of the Scrum team. In an ideal world, each team member is
working on software development around forty hours per
week. However, the real world is intruding with organizational
duties like installing software or doing paperwork, as well as
delays due to sickness, holidays, hardware breakdowns, and the
like. The velocity parameter is team-specific, and captures the
ratio of effective work hours spent on developing software to
hours invested. Knowing this parameter is essential for not
cluttering up a sprint with an excessive workload.

In our lab course, all participating students take on the
developer role, while two tutors take the roles of Scrum master
and product owner, respectively. Since tutors are more
experienced and not directly involved in the development
work, they can better supervise the process and ensure that the
Scrum values are respected. Furthermore, organizational
problems (like providing meeting rooms) can only be solved by
university staff. Tutors are also more familiar with the product
to be developed; thus, questions about the product can be
answered more accurately. However, we take care that the two
roles are clearly separated between the two tutors, such that
students always know which person to contact for which
concern.

The original Scrum process needed to be adapted to fit the
frame of a students’ course. In our setting, students work only
part-time for thirteen to fourteen weeks on the lab course; they
usually are not familiar with Scrum and have varying
programming knowledge and experience. Therefore, we start
the lab course with an introduction phase of two weeks and a
development phase with three sprints of four weeks.

During the lab course, we limit the workload according to
the credit points of the course – students are expected to work
on the lab course for only 180 hours in total. This means that
we only assume a 13-hour-week instead of a 40-hour-week.
The students are urged to put neither more nor less effort in the
lab course, ensuring a sustainable pace and mimicking
professional work without overtime or crunch time. This is
mostly based on an honest reporting of spent effort per student
for each user story. The spent working hours are visible to
everybody so that the students can monitor themselves;
additionally, the tutors may supervise the workload
distribution.

In the two week introduction phase, two lessons are given.
One lesson explains the Scrum process in detail. It focuses on a
practical view and introduces some additional means to support
the Scrum process in practice. Inspired by Pilone and Miles [2]
and XP [3], we use Planning Poker to estimate user stories,
test-driven development to ensure the quality of developed
software and continuous integration to monitor the integrity of
the product. The first lesson closes with the vision of the
product “The Bug is a Lie” and a hands-on session for playing

the card game. The second lesson introduces state-of-the-art
tools and libraries to work with during the development phase.
It also gives an overview about the code skeleton made
available to students to kick-start the project. The second
lesson closes with a live coding session, where students get
familiar with the skeleton and receive advice on where to start.

Each sprint in the development phase is structured as in the
original Scrum process with the meeting times scaled down to
the timeframe of the course. To consider overhead for
communication, setting up the development environment, and
getting familiar with tools and libraries, we assume an initial
team velocity of 0.7, and recompute the velocity after each
sprint. Each of the three sprints starts with a sprint planning
meeting where the product owner presents the whole product
backlog. All user stories are prepared, so that the students do
not have to elicit them in requirements meetings. Trainings
with participants unfamiliar to Scrum [4] showed that user
story decomposition is too complex for beginners and
decomposition is better trained through task decomposition of
user stories. The students themselves are responsible for
estimating user stories and assembling the sprint backlog. By
letting them independently select the workload and putting the
responsibility for the realization of the selected sprint backlog
on them, we aim at achieving a high team commitment to the
sprint. In the selection process, the students are encouraged to
use Planning Poker and UML sketches to discuss ideas and
transfer knowledge during their estimation. At the beginning of
estimation, tutors help developing task decompositions and
documenting ideas by UML sketches to guide the students to a
reasonable use of tools. In the four weeks of development, the
students also have to organize themselves, assign tasks, create a
design and architecture for the product, recognize impediments
and delays, and meet with the tutors (i.e. Scrum master and
product owner) for Scrum meetings once a week (which
corresponds to one meeting every thirteen working hours) for a
fifteen minutes standup meeting report on progress, plans, and
impediments in the fashion of a weekly Scrum meeting. Other
tutors’ meetings are scheduled as needed during the standup
meetings. At the end of each sprint, the product is presented in
a sprint review meeting. Not only the product, but also all
requested documentation such as architecture diagrams has to
be demonstrated. In the review meeting, the team gets feedback
on the product, its quality, and the implemented features. Each
sprint closes with the sprint retrospective, where the team
reflects about the execution of the last sprint, and identifies
areas of improvement guided by the Scrum master.

C. Tooling Infrastructure

The tooling infrastructure is primarily designated to support
the Scrum process discussed above. The tooling infrastructure
is intended to provide our students with a solid, ready-to-use,
state-of-the-art infrastructure for their lab course. In particular,
the aim is to provide enough room for individual tailoring
through students, but at the same time allowing students to get
quickly up to speed with development activities. Providing a
fixed tooling infrastructure helps avoiding lengthy negotiations
and discussions on topics that require substantial investigation
time for proper and conclusive decisions.

The tooling infrastructure we use in the lab course consists
of an integrated development environment (IDE) with unit
testing support, a version control system, a web-based issue
tracker and wiki for the management of the product and sprint
backlogs, a continuous integration solution, and a UML tool. In
the selection of the tools, we put special emphasis on tools that
integrate well with each other, provide a consistent experience,
and are easily accessible.

The tools in use are changed for each lab course based on
previous experiences. For the 2011 course, we selected Eclipse
[5] as IDE, as it provides an extensible platform with good tool
integrations, Trac [6] as web-based issue tracker and wiki, and
Subversion (SVN) [7] as version control system. All three tools
integrate well with each other. Eclipse and Trac offer both
sophisticated means for linking and navigating between related
resources, allowing for a quicker and better understanding of
the code base and the project activities (e.g., Trac allows to link
to wiki pages, tickets, source code lines, and revisions).

Fig. 2. Sprint Whiteboard

Trac itself is a minimalistic issue tracker that is extensible
through plug-ins. For supporting the Scrum process, we add the
plug-in EstimationTools [8] that draws burn-down charts based
on workload estimations attached to tickets. Fig. 2 shows the
sprint whiteboard wiki page featuring a burn-down chart as
well as automatically updated ticket lists (generated from ticket
queries) that show sprint backlog items (i.e. items not yet

started), items in progress, and completed items related to the
sprint.

Furthermore, we add the Bitten [9] continuous integration
plug-in to Trac that builds the product, runs all tests every six
hours, and displays results on build success, test success, code
size, and unit test coverage on the lab course's Trac site. Our
Eclipse setup also includes test supporting tools. While JUnit
test runners are included in the basic Eclipse distribution, we
also add EclEmma [10] as a coverage tool, and Infinitest [11]
as a continuous testing tool – a tool that runs all affected unit
tests on code changes.

Finally, we introduce MagicDraw [12] for the creation of
UML diagrams. We periodically encourage students to use
simple and communicative UML diagrams as means for
discussing and clarifying designs, and for documenting design
decisions at the end of each sprint. Therefore, we try to lead by
example, and deliver all introductory code with proper UML
documentation, demonstrate the use of UML sketches during
the sprint planning meeting, and support the design sessions
with clearly represented UML diagrams.

D. Libraries

Similar to the lab course tooling infrastructure, we focus on
state-of-the-art, exemplary libraries that feature well-designed
programming interfaces from which the students can learn, and
which help our participants in creating the product we require
them to produce. In the selection process, it is sometimes
necessary to balance between practicality and quality of the
libraries. For example, we decided to use JDBC [13] and
Swing [14] although both libraries have known design issues.
We furthermore provide students with libraries for networking
applications (Java NIO [15], JBoss Netty [16]), logging and
utilities (Log4J [17], Google Guava [18]), and concurrency
(Java Concurrency Framework [19]). For creating unit tests, we
supply JUnit 4 [20] and Mockito [21] for the creation of test
mocks.

We provide a short introduction for each library in the Trac
wiki, as well as links to detailed documentation. In this way,
the students are able to read up on more advanced topics.

E. Skeleton

With the substantial amount of libraries imposed on the
project, there is a considerable danger of overwhelming the
students with unfamiliar technology and tools, even though
introductory materials are supplied. We therefore provide a
code skeleton that already supplies a basic project setup and
exemplary code for library usage, coding style, and tests.
Additionally, the skeleton allows speeding up the
parallelization of development activities. If the lab course
started from scratch, the first weeks of development work
would be characterized by a constant overlap of activities and
students getting in each other’s way – a bad start for a course
that is (a) short and (b) depends heavily on the students'
motivation.

In our setup, we decide to invest ten person days (a week,
two developers) worth of time for the creation of the basic
skeleton on each installment. This time was sufficient to create

a fully operational client-server networking layer, a database
access layer, a registration/login facility, and rudimentary UI
shell (consisting of background, header, footer, and login,
logout, and registration screens), all with JavaDoc, architecture
documentation, and unit test coverage required from course
participants. Fig. 3 shows the UML class diagram of the
skeleton server that was provided together with two pages of
explanatory text.

Fig. 3. Server Skeleton Architecture

This skeleton formed the basis for extension and
improvement in the three sprints of the course.

III. RESULTS AND EVALUATION

We implemented the lab course during the summer terms of
2010 and 2011 with slightly varying setups, different
velocities, and slightly different time lengths (14 weeks in 2010
vs. 13 weeks in 2011). In both courses, six students with
varying levels of programming skills took part. All students
had taken part in a programming lab that focused on
programming activities, and followed no development
methodology. Still, the lab outcome was the creation of a
working product, which was achieved by putting in long hours
of hacking effort. The students also had heard lectures on UML
and object-oriented analysis and design. The low number of
students allowed us to focus heavily on the fine-tuning of the
course setup, although we would have favored a larger number
of students.

From the student questionnaires that were created
specifically for the evaluation of the new lab course, we can
deduce that the lab course setup is very well received. Slight
negative feedback was found on imposing the dictum of “good
enough design”, i.e. to only design a system as far as the
currently considered user stories require it to be designed and
to look no further ahead; students did not experience the value
and the potential of a clean and simple design, as it seems they

had a hard time at creating and capturing proper system designs
in general.

From a bird’s eye view, both courses successfully created a
restricted, but working and playable version of the game. The
created versions were robust, featured satisfactory unit test
coverage, and were of acceptable quality with regards to
readability and maintainability.

A. Product

In the execution of both lab courses, we found that the
product “The Bug is a Lie” is very well accepted. The game is
explained quickly, and especially the hands-on sessions where
the students can play the real card game are highly appreciated
and increase the understanding of the game. The students
generally examine the game so intensely that they ask very
precise questions about its rules.

Fig. 4 “The Bug is a Lie” Game Board

Concerning the functional challenges of the product, we
discovered that the students are able to grasp the main
intentions. However, students are generally challenged by the
implementation, specifically by the creation of multiplayer
facilities and game UI. In the end, however, students manage to
realize a sophisticated and appealing UI (Fig. 4 shows the
result of the 2011 course). Although the game UI itself was a
success, fundamental issues in user story definitions arose in
the second sprint of the two courses: Usually, students tend to
separate units of work along the layers of the product: if not
directed, students would create and work on user stories like
“user interface creation” and “server-side logic”, with the
consequence of largely omitting integration of the created
layers. Thus, students would fail in creating a satisfactory
product. Thus, we advise that tutors pay close attention that
user story partitioning is performed in accordance with
recommendations from the literature [22], i.e. in features with
real costumer value. Still, students tend to create a “game UI
kernel” user story, with the problem that as long as the game
UI kernel is under development, user stories concerning the
realization of game rules need to be queued. However, the card
game can indeed be decomposed into user stories according to

each card or rule, i.e. stories without a technical focus. The
product structure allows tutors to tune the amount of work per
sprint depending on the success and velocity of the Scrum team
with relative ease.

The product itself is appealing to the students. Most of the
students indicate that given the choice, they would value a fun
product more than a product relevant in research or industry.
However, some students criticized that the specific game “The
Bug is a Lie” is only fun for software engineers and fails to
attract non-professionals. They express that they would
appreciate the game more if they could share it with family and
friends.

B. Process Organization

The chosen process fits the settings of the lab course quite
well. It creates a high commitment of the students to the
product and the lab course itself. The students are able to create
a satisfactory and working product while learning the
cornerstones of effective software development.

Since the participating students have varying development
experience and programming skills, the introduction phase is
particularly useful. A 4-hour-lesson on Scrum is sufficient to

communicate the principles for the practical application of the
process in the lab course. After this introduction, all students
are able to put the Scrum rules into action in an effective way.
The second lesson on tools, libraries and the provided skeleton
allows an immediate kick-start of the project. However, tutors
must take care that enough time is reserved for intensive
coding and Q&A sessions since, due to the size and complexity
of the provided skeleton, difficulties in understanding and
extending it may arise.

One of the most important advantages of the outlined
process organization is the workload limit imposed on the
development of the product. On the one hand, this workload
limit creates great relief among the students since the lab
course has a sustainable pace and manageable workload
compared to other lab courses. Additionally, the introduction of
the team’s velocity to account for overhead meets general
approval (velocity is computed by dividing the sum of the user
story estimates by the effort put into the sprint) – it is a good
means for allocating time for initialization and organization.
On the other hand, the workload limit makes time a valuable
resource that has to be managed carefully. Students hence learn
to develop software with a limited time budget in an effective

Fig. 5. 2010 Hours Worked

Fig. 6. 2010 Lab Course Tickets

Fig. 7. 2011 Hours Worked

Fig. 8. 2011 Lab Course Tickets

Bla

way. As a result, students are highly motivated and invest the
requested time, as can be seen from figures Fig. 5 and Fig. 7

1
.

An important aspect in the setup of the development
process is the assignment of the roles of Scrum master and
product owner to the tutors and to two different persons,
leading to a clear separation of concerns. The students have
several questions about the rules, design and realization of the
product that are best answered by a product owner familiar
with the game. Conversely, the students can approach the
Scrum master with impediments or organizational problems. In
a students' course, the Scrum master has a highly important
supervisor role. She needs to pay special attention that the
students stick to the Scrum values because they often
experience difficulties with self-responsibility and self-
organization. The Scrum master has to remind the students that
they not only report on technical advances in the weekly Scrum
meetings, but also on delays, impediments and next steps and
that they critically analyze their best practices. They have to
establish openness and honesty as a common value so that
problems can be openly addressed. In our 2010 lab course,
closeness, ignorance, suspicion and mistrust among the
students and towards the tutors caused the degradation of
software quality in the second sprint. Issues were not reported
until the review meeting as can be seen in the lack of reported
issues in Fig. 6. This installment clearly demonstrated that
students must be encouraged to act on their own responsibility
and not wait for any instructions – for example, when
discovering ambiguities in user stories. In 2011, the students
used an open and honest communication channel where issues
were reported immediately (see Fig. 8) which led to a higher
quality of the final product.

We regard the Scrum process as suitable for the software
development lab course. The sprint planning meetings on the
development team’s responsibility and authority create a high
commitment of the students, the weekly Scrum meetings give
continuous feedback on the current status of the product, the
review meeting gets the customer and the development team
into touch and the retrospective exposes favorable and
unfavorable methods and practices. However, at the beginning
the estimation process is hard for the students. We recommend
that the tutors assist the first estimations by partitioning user
stories into tasks and providing solution approaches, but do not
overwhelm the students with hints since this has a high impact
on the estimations. As soon as the students become more
confident – normally not later than in the second sprint, the
tutors have to make sure to abandon their assistance to not
further influence the process. Depending on the progress of
work, it might also be better to hold the status report meetings
more often than once a week to give students more possibilities
to arrange the next steps when progressing fast. Due to the lack
of a constantly available shared working place, the students
also suffer from the problems of distributed development and
reduced availability. Therefore, they must be encouraged to
organize regular pair programming or working meetings to
benefit from quick communication channels and high

1 In the second installment of the lab course, one student exceeded the

requested effort by far. This violation of the workload limit was based on the

high commitment of the student to the lab course and was only tolerated after
agreement with the whole Scrum team and the tutors.

collaboration. In the same way, the students have to be urged to
make use of UML sketches. During the planning meeting and
the development work, UML sketches help to visualize and fix
ideas on the architecture of the product. We demonstrate the
advantage of UML for sharing knowledge by providing UML
diagrams for the skeleton, for recording ideas by documenting
the sprint planning meetings, and for clarifying designs by
supporting design discussions with UML. Unfortunately, the
students often have difficulties in formulating their visions in a
fast and simple way since they are either not used to creating a
proper system design at all or are only familiar with extensive
modeling instead of “good enough design”. Nevertheless, the
students generally benefit from the advantages of Scrum: short
sprints and an executable product at the end of each sprint keep
development on-time and effective while the students are
trained in self-responsibility and self-organization.

Conversely, self-responsibility and self-organization pose
challenges for grading. As previously mentioned, the focus of
this lab course is not on the completion of the product, but on
the realization of the process. In grading process acceptance,
care must be taken to only make demands that are measurable
or verifiable. Code coverage, architecture documentation and
conformity with user stories are good means to evaluate the
quality of the product without assuming a certain progress in
the completion of the product and can be easily supervised. To
rate the realization of the process, we monitor the participation
of each student in the meetings and the number of issues
detected by the team since this reflects the degree of
commitment to the lab course. In the same way, we do not
recommend to assign roles to students that involve
management activities (e.g. supervision of code coverage or
documentation), as it is difficult to grade students for results
achieved by others. Common responsibility and shared code
ownership lead to a high level of commitment and quality, but
need to be achieved through other means than grading.

C. Tooling Infrastructure

The tooling infrastructure is readily accepted by our
students. Due to the proficiencies in programming and in the
use of Eclipse they acquired in other courses, students are able
to leverage the provided introductions and documentation
made available in the Trac wiki. The students are generally
able to start working effectively right from the start of the
course, and to implement a significant part of their project
already in the first sprint. Hence, the expected kick-starting
effect and prevention of lengthy setup phases are both
achieved.

However, as the students become more and more familiar
with the tooling infrastructure, progress can still be impeded
due to design and code quality issues of the created code.
Luckily, acquired familiarity with the infrastructure allows
students to cope with these issues.

Also, the visibility and browsability of the code base,
progress and remaining workload that Eclipse, Trac, and SVN
offer enables students and tutors to discover impediments and
problems early enough to remedy them within the lab course.
The immediate and persistent feedback provided by continuous
integration – specifically concerning unit test coverage – also

allow the tutors to point the finger on issues that are relevant
for project success.

On the negative side however, we discovered that students
have a hard time getting used to specifying and updating
remaining efforts on Trac tickets, which is mostly due to
neglect. During the first sprint, the Trac tickets created by
students need to be reviewed, and immediate feedback must be
given.

D. Libraries

The proposed approach to library use is largely embraced
by the students. While the more advanced students find good
use of the libraries provided, the less advanced students make
use of the available examples in the skeleton and the provided
documentation. Both seem enough to eventually cope with the
unknown APIs, although pair programming sessions may help
to transfer knowledge far quicker.

Furthermore, we experienced the value of clear and
accessible documentation of libraries, once a student
introduced a library with documentation that is not freely
available. Students struggled heavily with the new library, and
as a consequence, a large part of the code became only
maintainable through a single student. This incident also shows
that course supervisors need to be aware of the consequences
and impact of student’s actions and general approach.

E. Skeleton

The provided skeleton is well adopted by students. In the
first sprint of both course installments, however, students had
unexpected difficulties in understanding the provided skeleton,
and in finding the proper starting points. Students need very
extensive and clear documentation of interfaces and starting
points, and it seems like the provided explanations were
insufficient. Also, students tend not to maintain the coding and
testing standards of the skeleton by themselves. Several gentle
reminders in sprint retrospectives and dedicated design patterns
and design principle sessions are necessary to achieve an
acceptable software quality. On the other hand, by letting the
quality degrade, students get first hand experiences on the
consequences of code quality degradation for their project's
progress.

Nevertheless, the kick-starting effect of the provided
skeleton is clearly achieved, as the general project progress is
characterized by a very productive first sprint, and a significant
slow-down in the second sprint due to degrading software
quality (as Fig. 6 shows, this effect was also visible in the
amount of tickets of the 2010 course installment). It can be
expected that if the students started from nothing, the first
sprint would be characterized by slow progress. Additionally,
as expected, the skeleton provides useful examples of library
usage, and reduces the amount of conflicts in collaboration.
Furthermore, in the case of code quality degradation, the
skeleton provides presentable code examples that are up to
standard.

IV. AREAS OF IMPROVEMENTS AND FURTHER IDEAS

The lab course setup, with its product, process,
infrastructure, libraries and skeleton has proven to be adequate
for successfully teaching agile software development practices.
Nevertheless, the two instantiations of the course have
disclosed shortcomings that should be addressed in future
installments. These areas of improvements can be grouped
around knowledge transfer improvements and process
improvements.

Concerning knowledge transfer, we experienced that the
introduction to the skeleton code needs to be extended. For
this, plenary sessions with live code inspection, discussion and
coding may be helpful. In addition, precise and simple-to-read
written instructions on how to extend the skeleton code should
be provided.

Furthermore, we believe that on top of the regular Scrum
meetings happening during the lab course, weekly plenary
sessions should be established for discussions on design
patterns, design principles, programming techniques and tool
usage. These sessions should be held in the tradition of coding
dojos [23], i.e. with focus on learning by example, learning
from each other, and helping to improve the programming and
design skills of the students. Following our experience with
test-driven development coding dojos, it is important to create
an open, motivating and positive learning environment for
maximum knowledge transfer.

On the organizational side, we observed in both
installments of the lab that the students were struggling for
proper communication channels. Students tried to establish the
use of forums, or instant chat clients with varying success. We
cannot provide a conclusive and well-founded recommendation
on the best electronic communication means, but a group
solution like Google groups or Yahoo groups may be a
worthwhile addition. The problem of proper communication
channels in both installments is obviously due to the lack of a
constantly available shared working place. In fact, students
quickly began to organize regular pair programming or
working meetings to mitigate the effects of a distributed team.
At the end of the course, they expressed their regret for not
having started these practices earlier. It is hence wise to suggest
teams to establish these practices right away, or to provide a
meeting place and fixed hours.

Also, we discovered that the use of SVN for version control
can cause significant issues in collaboration. Students that need
longer for finishing tasks, and therefore refrain from
committing often to the repository, can find themselves in the
challenging situation of having to merge a considerable amount
of conflicts. To alleviate this problem, we consider using a
distributed version control system like Git [24] as a
replacement for SVN. Git would allow students to commit
small increments to their local repositories, and therefore make
merging easier when pushing changes to the shared repository.

A big concern in establishing coding/design dojos and
regular shared working sessions is the lack of familiarity and
trust that newly formed teams experience. One can expect that
students may be reluctant to committing to these activities
without knowing their team-mates well. To help the teams start

establishing healthy practices, it is therefore necessary to
introduce team-building activities.

Fig. 9. Lego4Scrum City Example

One team-building activity with the beneficial side effect of
serving as a practical introduction to Scrum is Lego4Scrum
[25]. Lego4Scrum is a small project for consolidating and
deepening knowledge of Scrum techniques using as product a
Lego city consisting of houses, cars, and utility buildings and
vehicles (e.g. trucks, tower cranes, bridges, and car ports).
Fig. 9 shows a Lego city in construction, in which one house
with garden, a bridge, a tower crane, a car and a too low-
ceilinged car port (on the bottom right) is already installed. The
Lego4Scrum project can be completed in a 3-hour-session,
since all meetings and the sprint duration itself are reduced to
five minutes. Lego4Scrum sessions allow newly trained Scrum
developers to experience Scrum techniques and practices such
as workload estimation with Planning Poker, process
improvement through sprint retrospectives and project status
visualization through sprint whiteboards. During the
supervision of five Lego4Scrum team projects in 2011, we
observed that due to the time pressure and vivid interaction, the
team members get to know each other. Especially, they get a
better understanding of how the team operates under pressure,
and how the team may self-organize during the full lab course.
This information may also be useful for supervisors to identify
issues in team structure and communication, and may allow
enough time for reflection and introduction of respective
coaching measures early in the course. Therefore, we expect
that using Lego4Scrum will be beneficial in future installments
of the software development lab course for a further
acceleration of project initialization and initial team building.

Another issue that was not yet investigated is managing
larger numbers of students in the lab course. Due to the low
number of participants in both installments, it was not
necessary to split up the participants into separated teams.
While this allowed us to focus on other issues in the course
organization, managing large student numbers needs to be
feasible if the course is intended to reach a larger audience.
From our experience, we see two possible courses of actions.
The first one is to create collaborating Scrum teams working on
different areas of the same product. For the game “The Bug is a
Lie”, it would be possible to accommodate two parallel teams
by putting one team on the development of the actual game,
and another team on the development of functionality that a

multiplayer game needs (such as e.g. game creation, game
browsing, game invitations, chats, game statistics, and player
statistics). We experienced that a single Scrum team of six
students was not able to implement all features and
functionality required in both areas of the product. Another
way of scaling up to higher numbers of participants is to put
teams in competition to each other and to let them build the
same product. This is a classical approach to the organization
of large programming courses, but it also involves delegating
the roles of Scrum master and product owner to students or
tutors to keep the number of required mentoring staff
maintainable. This would entail that the teams are basically left
to work on their own, which also requires additional efforts
from the tutoring staff to ensure they keep adhering to Scrum
practices. In general, students that are exposed to a coherent
process for the first time need more guidance and tutoring for
following that process than less.

V. RELATED WORK

Using agile methods in a software development lab course
is nothing new. Since the declaration of the agile manifesto,
several university courses were designed and held on the basis
of agile principles. Reichlmayr reports in [26] on one of the
first course setups based on elementary agile principles (e.g.
frequent work delivery, regular reflection, and software as
measure of progress) with a very rudimentary course
infrastructure compared to what we found necessary. Bower
and Hughes focus in [27] on the learnability of industry-grade
test-driven development (TDD) and continuous integration,
and conclude that they are worthwhile for student projects in
academia as well. Our experience with continuous integration
and TDD is in line with their statements. Pinto et al. report in
[18] on a Scrum-based NXT robot project executed by a
student team of five members. The team used Google groups
and Google documents to collaborate; our infrastructure is
more elaborated and geared towards software development in
comparison. Pinto et al. identified Scrum as suitable for student
projects, and highlight the benefits of Scrum as increased
progress visibility, and increased student focus and motivation.
In [29], Rico and Sayani report on the result of the adaptation
of capstone courses to agile methods. They conclude that
proper tutoring and coaching of teams with respect to agile
methods is a key factor for a project’s success; we are in line
with these findings, and provide more details about the lab
infrastructure that can be used. Lingard and Barkataki focus on
teamwork learning in [30], but they also stress that the self-
organization principle of Scrum is beneficial in the
organization of large courses comprised of several parallel
teams. In [31], Scharff discusses a globally distributed
implementation of an agile process with separate auditor teams
recruited from the students themselves. The auditors reviewed
process adherence as well as project progress. In her findings,
Scharff stresses that Scrum helps students to structure both
development and learning work that a project requires, and that
students are initially overwhelmed by the amount of activities
and discipline that Scrum requires – a finding that indicates
that students are often lacking crucial skills and knowledge
initially. Devedzic and Milenkovic present their insights and
advices on teaching agile software development in [32],
namely: training using practice, having clear role assignments,

allowing and fostering self-organization of teams, and keeping
teams small and sprints short. As all other related work, they
report that the implementation of agile methods in lab courses
was successful. However, none of the work stressed planning
of work capacity management and team velocity computation,
or focused on the integration of development process and
tooling infrastructure, and the presentation of an infrastructure
template for lab courses.

VI. CONCLUSION

Planning, designing, and implementing today’s software
systems require a higher level of collaboration and teamwork
than ever before. It is therefore crucial to expose these topics to
tomorrow’s software engineers as part of computer science
curricula, and do so in a manner which highlights the
importance of following software development processes, and
not present them as an unnecessary burden which does not
remedy the seemingly inevitable “code-and-fix” phase at the
end of a project.

In this paper, we have presented the setup, implementation,
and results of two highly successful software development labs
conducted at our university in 2010 and 2011. The labs are
based on agile development methodologies (specifically
Scrum), permanent collaboration and feedback, and keeping an
(adapted) work-life balance. We have found the easy-to-
understand, accessible Scrum methodology to be ideal for
introducing software processes – not to mention its widespread
industry acceptance. Other key lessons learned from our labs
include using a fun challenge for student motivation and
providing a skeleton and development environment for a quick
start. We hope that our findings may benefit and inspire other
instructors. We are keen on your input on the presented
methods, and will gladly share more information on our setup.

ACKNOWLEDGMENT

The authors would like to thank Martin Wirsing and Rudolf
Haggenmüller for enabling the creation of the new software
development lab course described in this paper, as well as all
students that took part in the labs.

REFERENCES

[1] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Prentice Hall, 2002.

[2] D. Pilone and R. Miles, Head first software development. O’Reilly,
2007.

[3] K. Beck, “Embracing change with extreme programming,” IEEE
Computer, vol. 32, no. 10, pp. 70–77, 1999.

[4] K. Schwaber, Agile Project Management With Scrum. Microsoft Press,
2004.

[5] J. D’Anjou, S. Fairbrother, and D. Kehn, The Java Developer’s Guide to
Eclipse, 2nd ed. Addison-Wesley, 2004.

[6] D. J. Murphy, Managing Software Development with Trac and
Subversion: Simple project management for software development.
Packt Publishing, 2007.

[7] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version
Control With Subversion for Subversion 1.6: The Official Guide And
Reference Manual. CreateSpace, 2010.

[8] EstimationTools, trac-hacks.org/wiki/EstimationToolsPlugin.

[9] Bitten, bitten.edgewall.org.

[10] EclEmma, eclemma.org.

[11] Infinitest, infinitest.github.com.

[12] MagicDraw, magicdraw.com.

[13] G. Reese and A. Oram, Database Programming with JDBC and Java.
O’Reilly, 2000.

[14] M. Robinson, P. Vorobiev, P. A. Vorobiev, D. Anderson, D. Karr, and J.
Gosling, Swing, 2nd ed. Manning Publications, 2003.

[15] R. Hitchens, Java NIO. O’Reilly, 2002.

[16] JBoss Netty, jboss.org/netty.

[17] C. Gülcü, The Complete Log4j Manual: The Reliable, Fast and Flexible
Logging Framework for Java. QOS.ch, 2003.

[18] Google Guava, code.google.com/p/guava-libraries/.

[19] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea, Java
Concurrency in Practice. Addison-Wesley, 2005.

[20] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, JUnit in Action,
2nd ed. Manning Publications, 2010.

[21] Mockito, code.google.com/p/mockito/.

[22] M. Cohn, User Stories Applied: For Agile Software Development.
Addison-Wesley Professional, 2004.

[23] D. T. Sato, H. Corbucci, and M. V. Bravo, “Coding dojo: An
environment for learning and sharing agile practices,” in Agile, 2008.
AGILE’08. Conf. IEEE, 2008, pp. 459–464.

[24] T. Swicegood, Pragmatic Version Control Using Git. Pragmatic
Bookshelf, 2009.

[25] Lego4Scrum, www.lego4scrum.com.

[26] R. T., “The agile approach in an undergraduate software engineering
course project,” in Proc. 33rd IEEE Frontiers in Education Conf. IEEE,
2003, p. 5.

[27] J. Bowyer and J. Hughes, “Assessing undergraduate experience of
continuous integration and test-driven development,” in Proc. 28th Int.
Conf. Software Engineering. ACM, 2006, pp. 691–694.

[28] L. Pinto, R. Rosa, C. Pacheco, C. Xavier, R. Barreto, V. Lucena, M.
Caxias, and C. M. Figueiredo, “On the use of scrum for the management
of practcal projects in graduate courses,” in Proc. 39th IEEE Frontiers in
Education Conf. IEEE, 2009, pp. 1396–1401.

[29] D. F. Rico and H. H. Sayani, “Use of Agile Methods in Software
Engineering Education,” in Agile, 2009. AGILE’09. Conf. IEEE, 2009,
pp. 174–179.

[30] R. Lingard and S. Barkataki, “Teaching teamwork in engineering and
computer science,” in Proc. 41th IEEE Frontiers in Education Conf.
IEEE, 2011.

[31] C. Scharff, “Guiding global software development projects using scrum
and agile with quality assurance,” in Conf. Software Engineering
Education and Training. IEEE, 2011, pp. 274–283.

[32] V. Devedzic and S. R. Milenkovic, “Teaching Agile Software
Development: A Case Study,” IEEE Transactions on Education, vol. 5,
no. 2, pp. 273–278, 2011.

