
1

The Autonomic Cloud: A Vision of Voluntary,
Peer-2-Peer Cloud Computing

Philip Mayer1, Annabelle Klarl1, Rolf Hennicker1, Mariachiara Puviani2, Francesco Tiezzi3,
Rosario Pugliese4, Jaroslav Keznikl5, Tomáš Bureš5

1Ludwig-Maximilians-Universität München, Germany 2Università di Modena e Reggio Emilia, Italy 3IMT
Institute for Advanced Studies Lucca, Italy 4Università degli Studi di Firenze, Italy 5Charles University in Prague,

Faculty of Mathematics and Physics, Czech Republic

Abstract—Autonomic computing — that is, the development
of software and hardware systems featuring a certain degree
of self-awareness and self-adaptability — is a field with many
application areas and many technical difficulties. In this paper,
we explore the idea of an autonomic cloud in the form of a
platform-as-a-service computing infrastructure which, contrary
to the usual practice, does not consist of a well-maintained set of
reliable high-performance computers, but instead is formed by
a loose collection of voluntarily provided heterogeneous nodes
which are connected in a peer-to-peer manner. Such an infras-
tructure must deal with network resilience, data redundancy,
and failover mechanisms for executing applications. We discuss
possible solutions and methods which help developing such (and
similar) systems. The described approaches are developed in the
EU project ASCENS.

I. INTRODUCTION

At the very latest, the seminal article of Kephart and
Chess [1] has brought the awareness of autonomic computing
ideas to the global computer science researcher community
(pun intended). Autonomic systems, which work in distributed
environments and react to unforeseen, dynamically evolving
situations, require self-* (self-star) properties, which include
self-awareness, self-expression, and self-adaptation [2]. Adapt-
ing to new situations is necessary not only on the level of
individual components, but also on a collaboration level.

The EU project ASCENS [3] is one of the many initiatives
contributing to the vision of autonomic computing. It advo-
cates an approach in which autonomic systems are formed by
individual building blocks called service components (SCs)
which are combined in a dynamic manner to form service
component ensembles (SCEs). ASCENS has the goal of devel-
oping a coherent, integrated set of methods and tools to build
software for ensembles; a specific focus lies on foundational
issues that arise in the development of these kinds of systems.
All results produced by ASCENS can be found online [4].

In this paper, we discuss one of the case studies of the
ASCENS project, which is a vision of an autonomic cloud:
A cloud which is based on voluntary computing and using
peer-to-peer technology to provide a platform-as-a-service. We
call this cloud the Science Cloud Platform (SCP) since the
cloud is intended to run in an academic environment (although
this is not crucial for the approach). We present the idea
of such a cloud system along with some of the methods of
ASCENS which have been used in this context. We believe

that awareness is a key enabler of the SCP, and we hope to
shed more light on its role in this paper.

The remainder of this work is structured along the lines
of the methods used in the case study. Firstly, we introduce
the idea of the cloud itself (section II). Afterwards, three
sections introduce ASCENS methods which have been used to
model and develop the cloud (awareness patterns in section III,
modeling in section IV and system specification in section V).
A prototype implementation in Java is discussed in section VI.
An excursion into the area of mobile cloud computing is
presented in section VII. After a discussion of related work in
section VIII, we conclude in section IX.

II. AN AUTONOMIC CLOUD

The idea behind the scenario we discuss in this paper
is that of an autonomic cloud computing platform; or, in
other words, a distributed software system which is able to
execute applications in the presence of certain difficulties such
as leaving and joining nodes, fluctuating load, and different
requirements of applications to be satisfied.

We integrate elements from three different computing areas
to set up this vision, which will be discussed in the follow-
ing three subsections; these are cloud computing, voluntary
computing, and peer-to-peer computing.

A. Cloud Computing

Firstly and obviously, we deal with cloud computing. Cloud
computing refers to provisioning resources such as virtual
machines, storage space, processing power, or applications to
consumers “on the net”: Consumers can use these resources
without having to install hardware or software themselves and
can dynamically add and remove new resources.

There are three commonly accepted levels of provisioning
in cloud computing, which are infrastructure, platform, and
software. In the first, low-level resources such as virtual
machines are offered. In the second, a platform for execut-
ing custom client software is provided. On the third level,
complete applications (such as an office suite) is provided,
mostly directly to end users. In any case, clouds are usually
offered from one or more centrally coordinated locations; the
servers providing the infrastructure run in a well-maintained
data center and are under the control of a single entity.



2

In the ASCENS cloud computing case study, we will be
concerned with a Platform-as-a-Service (PaaS) solution. The
goal of the case study is providing a software system (called
the Science Cloud Platform, SCP) which will, installed on
multiple virtual or non-virtual machines, form a cloud provid-
ing a platform for application execution (these applications in
turn providing SaaS solutions). The applications running on
top of the platform are assumed to have requirements similar
to Service Level Agreements (SLAs), which includes where
they can and want to be run (regarding CPU speed, available
memory, or even closeness in network terms such as latency
to other applications or nodes).

B. Voluntary Computing

The second area is voluntary computing. This term usually
refers to solutions in which individuals (consumers) offer part
of their computing power to take part in a larger computing
effort. The classic examples are the @home programs, of
which SETI@Home [5] where personal computers are used
in the search for extra-terrestrial intelligence is probably the
most famous. Usually, voluntary computing is focused on
computation; it depends on an agency which provides a
centralized infrastructure into which people may plug-in, get
their data from, perform calculations, and report back.

In the ASCENS cloud computing case study, we will adopt
the voluntary computing approach insofar as we imagine indi-
vidual entities (which includes natural persons, but universities
as well) to voluntarily provide computing power in the form
of cloud nodes which they can add or remove at any time
as they see fit; i.e. nodes can come and go without warning,
and their load may change outside of cloud concerns. They
may include vastly different hardware, which includes CPU
speed, available memory, and also specialized hardware as for
example graphics processing chips.

C. Peer-to-Peer Computing

Finally, the last area is peer-to-peer computing. First popu-
larized in the infamous area of file sharing, the basic idea of
peer-to-peer computing is the lack of a centralized structure.
There is no single node in the network on which the func-
tionality of the overall system depends; rather, a decentral-
ized communication approach is used which ideally is stable
through the process of nodes coming and going, and offers no
single point of failure, or single point of attack.

The ASCENS cloud computing case study is based on this
idea; i.e. there is no centralized component in this cloud and
nodes have to use some protocol to agree, in a decentralized
manner, on where and what to execute. As already discussed
above in the voluntary computing part, nodes may thus come
and go without having to inform a central entity.

D. Bringing it all Together

Thus, all in all, we have a voluntary, peer-to-peer based
platform-as-a-service solution. Such an infrastructure requires
autonomic nodes which are (self-)aware of changes in load
(either from cloud applications or from applications external

to the cloud) and of the network structure (i.e. nodes coming
and going) which requires self-healing properties (network
resilience). Another issue is data redundancy in case nodes
drop out of the system, which requires preparatory actions.
Finally, executing applications in such an environment requires
a fail-over solution, i.e. self-adaptation of the cloud to provide
what we may call application execution resilience.

It is not necessary in this context to prevent participation of
partially centrally-controlled entities such as IaaS providers.
In fact, parts of the SCP may run on IaaS solutions which
enables it to spawn new virtual machines or shut them down
again. Such additional functionality can be used to balance
load or to conserve energy.

To sum up in one sentence, the goal of the SCP is to deploy
and run user-defined applications on the p2p-connected web
of voluntarily provided machines which form the cloud.

III. ADAPTATION IN THE CLOUD

A common approach to understanding, categorizing, and
designing IT systems is the use of patterns, i.e. descriptions
of characteristics which have proven to be beneficial for the
implementation of a system. Within ASCENS, a catalog of
architectural design patterns has been developed [6] which are
intended to be used to build adaptive components and systems.

The design patterns have been studied with regard to the
cloud case study [7]. In this section, we will discuss two
patterns which have been used in the cloud.

Firstly, we need to discuss individual cloud nodes (which
we call SCPis, for Science Cloud Platform instances). In
this regard, the proactive service component pattern [7] best
captures the behavior of such a node. This pattern enables
the SCPi, which is a Service Component (SC) in the terms
of ASCENS and the adaptation pattern itself, to have an
internal feedback loop, or, in other words, implicitly contain
an Autonomic Manager (AM) which is responsible for driving
the adaptation through this feedback loop. These kinds of
components are used because nodes in the cloud are goal-
oriented in nature and actively try to adapt their behavior,
even without an external call (e.g. for saving energy). A
visualization of such a component is shown in Figure 1.

In the cloud, one such node uses its sensor to read environ-
mental values such as CPU speed, current load, etc.; effectors
may be used to configure an IaaS solution. Inputs and outputs
refer to a user interacting with deployed applications. The
control and emitter ports are used for ensemble adaptation
(see below).

By using the proactive service component pattern, individual
SCP nodes are self-aware and able to self-adapt, each fol-
lowing the goal of achieving best performance for deployed
apps while saving energy. The internal feedback loop created
through the AM part of the node is used for checking these
conditions and adapting properly.

Furthermore, multiple nodes work together to execute appli-
cations. On this level, the p2p negotiation service components
ensemble pattern [7] is a fitting description of this behavior,
since each node (potentially) communicates with every other
node for adaptation, there is no central coordinator, and each



3

Figure 1. Proactive Service Component

node follows a goal (which in this case is the same for each
node, though with different data depending on deployed apps).
The use of this pattern is also possible because the components
that form the ensemble are proactive and need to communicate
with others to propagate adaptation. This is done, as indicated
above, through the control and emitter interfaces of the service
component.

Using this pattern, multiple SCP nodes work together: For
each application, one ensemble consisting of a subset of the
overall cloud nodes is formed which is then responsible for
executing the application (which includes deployment, finding
an executor, executing, and monitoring). We call such an
ensemble an SCPe (Science Cloud Platform ensemble).

IV. MODELING ENSEMBLE BEHAVIOUR

Modeling the behavior of the individual components and
the ensembles which implement the cloud functionality is
challenging due to the complexity and dynamics of the par-
ticipating ensembles. In ASCENS, existing techniques such
as component-based software engineering ([8], [9]) have thus
been augmented with features that focus on the particular char-
acteristics of ensembles. Among these are the fact that ensem-
bles are dynamically formed on demand, realizing collective,
goal-oriented behavior through communication between the
individual participants; furthermore, multiple ensembles may
run concurrently using the same basic resources, but dealing
with different tasks on a higher level. To be able to model these
issues on a first-class basis, the Helena approach [10] has been
developed, which uses a UML-like notation for collaborations
founded on a rigorous formal semantics.

A particular property of ensembles is the fact that although
the platform on which ensembles run may itself be plain
component-based, each component can take part in different
ensembles and in the course of doing so take up different,
ensemble-specific roles [11]. A service component may play
different roles at the same time, both in one ensemble and in
different, concurrently running ensembles; it may also dynam-
ically change its role(s) in order to adapt to new situations.

The Helena approach is centered on this notion of roles
and the collaboration of roles in ensembles for pursuing the
ensemble goal. In the present case study, there may be multiple
such ensembles; one for each of the applications which are
executed within the cloud. Each ensemble has the goal of
deploying the application, finding an execution target node,

executing, and finally monitoring the application execution.
This is illustrated in Figure 2.

Figure 2. Ensembles in the Helena approach

The first or basic level (on the bottom of the figure) shows
the pool of all SCPi nodes which are, in principle, able
to provide resources to the cloud. In the figure, these are
the four nodes labeled i1 to i4, which may be physical or
virtual machines on which instances of the science cloud
platform (SCPis) are running. Each of these may participate
in ensembles for executing an application. As indicated in the
figure, executing an application requires different responsibil-
ities taken up by different roles in the ensemble. These are
the deployer (node from which the application originates), the
initiator (leading the search for an execution node), the actual
executor, and a monitor which keeps tab on the executor.
As an example, the figure shows two different ensembles,
each executing one application, where nodes concurrently play
different roles or do not participate at all.

Ongoing research in Helena currently focuses on the de-
scription of the behavior of each role as well as on the behavior
on the ensemble level. These descriptions are given a rigorous
formal foundation, which can then be exploited for ensuring
that the ensemble behavior actually reaches the desired goal.
We believe that the analysis of ensembles of collaborating
roles can be beneficial to developers due to the reduction of the
complexity of the models, since the combination of all roles
within one service component must only be integrated into a
component-based architecture in the following implementation
phase. This is discussed in the next section, where a language
is presented to which a systematic transition from Helena is
currently being investigated.

V. SYSTEM SPECIFICATION IN SCEL

ASCENS has been studying linguistic primitives suitable for
the autonomic computing paradigm, and has developed the
language SCEL (Software Component Ensemble Language)
[12], [13] which is geared towards describing autonomic
systems, taking into consideration the behaviors, knowledge,
and aggregations involved, based on specified policies. SCEL
in particular supports programming context-awareness, self-
awareness, adaptation and ensemble-wide interactions.



4

In the following, we discuss the application of SCEL to the
service components of the cloud case study. The concept of
a service component – or autonomic component – lies at the
heart of SCEL. This concept directly matches the notion of an
SCPi, i.e. an individual node in the science cloud. Furthermore,
the notion of an ensemble in SCEL matches the notion of an
SCPe, since both are based on components’ attributes, which
in the science cloud usually take the form of participation in
the management of a cloud application.

As an example, we consider here the SCEL implementation
for a situation in the cloud where a node is overloaded, i.e. the
CPU load exceeds a certain threshold and an application needs
to be moved to a different node. This scenario includes the use
of an IaaS solution, that is we include the ability to spawn a
new virtual machine and moving the application there.

The full SCEL specification for the scenario of high load
and moving an element to a newly created VM can be found
in [13]. We will outline the general idea of the behavior here.
The SCPi where the application is running initially is the
SCEL component I[K,Π, (AM [ME])]. The interface I of the
component encapsulates the remaining three elements. K rep-
resents the knowledge of the SCPi, which includes attributes
relevant for adaptation. Π is the policy the component follows,
which in this case is specified in SACPL, the SCEL Access
Control Policy Language [13], discussed below. AM [ME]
is the (controlled) composition of processes AM and ME
running in the component.

As we have seen in the section on adaptation patterns,
an SCPi follows the proactive service component pattern.
This means it contains, as in a SCEL component, internal
knowledge and goals. In the above definition, the main work
of the node, including the application logic, is performed in
the Service Component (SC) which here is called Managed
Element (ME). The component also contains its own, im-
plicit, Adaptation Manager (AM ), which specifies actions for
adaptation (in particular, spawning a new machine).

The actual adaptation logic (i.e., when to adapt) is dealt
with using the policy Π. The component’s interface I exposes
the attribute CPULoad, whose value (i.e., a percentage of
load) is a context information sensed by the component from
the underlying infrastructure. The policy Π detects when the
attribute value is over a given threshold (e.g., 80%) and
triggers the autonomic manager. More specifically, the policy
says that the main application logic, which is part of ME,
may only be performed as long as CPULoad is less than the
threshold, while the spawning of a new machine (realized by
means of an action new in AM) may not be performed until
CPULoad is greater than the threshold.

An interesting problem in this context is that Π, ME and
AM in a dynamically created VM are the same as those within
the corresponding source node of the science cloud; however
the application logic which is part of ME may only be
executed on one machine at a time (since we assume that the
application is a singleton). To ensure such behavior, multiple
options have been explored with different power of expression.
First, it is possible to add a new attribute to the component
which keeps track of its execution status; AM is thus modified
to properly set such an attribute. Second, the policy Π can be

extended to include obligations that are actions executed as
part of a node switch to take care of dealing with the execution
status attribute (in place of AM ). Finally, it is possible to
use several policies instead of a single one, and dynamically
switch between policies on an adaptation by means of a sort
of automata where states are policies and state transitions
represent adaptivity events (expressed as policy targets). The
details of these three options are discussed in [13].

To summarize, the above description has shown the use of
SCEL and a policy language, SACPL, to model a scenario
within the science cloud where high load of a node leads to
the spawning of a new virtual machine with an additional SCPi
which can take over the application logic. An implementation
of these abstract descriptions can be done in Java (as discussed
in the following chapter) or more directly in jRESP [13], which
is currently work in progress.

VI. IMPLEMENTING THE SCIENCE CLOUD PLATFORM

As identified in the previous sections, the cloud system will
need to be implemented in a peer-to-peer manner with a heavy
focus on being aware of changes in the available nodes and
the load of each node. There are obviously multiple options of
implementing such a system, and we are experimenting with
several of them. Here, we are reporting on an implementation
which is based on the existing peer-to-peer substrate Pastry
[14] and accompanying protocols as well as an interpretation
of the ContractNET protocol [15] used for the decision process
on application execution.

The implementation is split into three layers: A network
layer, which implements routing and message passing along
with network self-healing properties; a data layer which han-
dles data storage, including redundancy, and an application
layer, which handles execution and fail-over of applications.

On the network level, the nodes which form the science
cloud need to know about one another and be able to pass
messages, either to single nodes (unicast), a group of nodes
(multi- or anycast), or all nodes (broadcast). Given that the
network can potentially become large, it is advisable that not
all nodes need to know all other nodes. Furthermore, routing
needs to be stable under adverse conditions (i.e. nodes that are
part of the science cloud leave, or new nodes are added).

We use the existing protocol Pastry [14] in the form
of the FreePastry implementation [16] as the basis of this
layer, extended with the SCRIBE protocol [17] for any- and
broadcast purposes. The inner workings of Pastry are similar
to that of classic Distributed Hash Tables (DHTs), that is,
each node is assigned a unique hash and nodes are basically
organized in a ring structure, with appropriate shortcuts for
faster routing. The protocol has built-in network resilience
(self-healing). Efforts are under way to verify these properties
formally [18].

The second layer handles data. When an application is
deployed, the code needs to be available to all nodes which can
possibly execute it; furthermore, application data needs to be
stored in such a way that resuming an application, after a node
which ran it failed, is possible. We thus need data storage with
data redundancy, not only of immutable data (application code)



5

but also of mutable data (application data). Data is handled on
top of Pastry using gcPAST, which is an implementation of
the PAST protocol [19] with support for mutable data. PAST
basically implements a DHT and includes a data redundancy
mechanism which works by keeping k copies of a data package
in the nodes surrounding the primary storage node (which is
the one the data package hash is closest to).

The final layer, and the one implementing the actual
platform-as-a-service idea, is the application layer. Applica-
tions can only run on some machines (based on requirements)
so these must be found in the network. Every user of the cloud
runs (at least) one instance of an SCPi and uses this instance
both for deploying and using applications.

Deploying an application first means simply storing the
executable code (as an OSGi bundle), which is based on
the primary storage node idea introduced above. The primary
storage node assumes the role of the initiator in the Contract-
NET protocol [15] and uses a SCRIBE-based communication
channel to request bids for execution. The request for bids
includes the requirements of the application extracted from
the stored bundle. Bids received back are evaluated and an
executor node is selected.

While the executor runs the application, the initiator
switches to a monitoring mode to ensure application availabil-
ity on a regular basis. If the executor itself detects that it can no
longer execute an application (for example, due to high load),
it informs the initiator which initiates a new bidding process.
The same applies if the executor node goes down, which is
detected by regular checks from the initiator. If the initiator
itself goes down, the hash-based node and data identification
automatically leads to a new nearest node and thus initiator.

The SCP implementation is open-source and available from
the ASCENS website [4].

VII. MOBILE CLOUD COMPUTING

An interesting aspect of the case study is the fact that the
individual nodes can be personal computers. As such, the
concept also includes mobile nodes: laptops, tablets, or even
smartphones. Mobile devices have some noteworthy properties
in addition to standard nodes. They are devices (a) whose
neighbors – in the sense of network proximity – may change,
(b) whose battery capacity is limited, and (c) whose computing
capacity may be (severely) limited as well.

Applications running on top of the science cloud may want
to take those properties into consideration. In fact, we can
imagine that applications intended to run on mobile devices be
effectively split into two components, or smaller applications,
communicating with one another. In one scenario, they may
both run on one SCPi — if the node is powerful enough and
access to power is not an issue; in another, they may be split
between two SCPis, one on a mobile node (which handles
UI) and another on a stationary node (which handles the
computationally extensive background work). In order to keep
the user interface responsive, the network latency between the
two nodes may not exceed a certain threshold, which becomes
problematic in the presence of (physical) node mobility.

This scenario has been investigated within ASCENS [20].
The envisioned method for this case uses a specialized adap-

tation architecture which, through two components, takes care
of the planning and monitoring involved.

The first component involved is the monitor, which works
within an application and can operate in one of two modes:

Running mode. In running mode, the monitor executes
as part of a running application, i.e. it reflects the actual
deployment. The monitor gathers data about the current node,
which includes the performance and battery life. This non-
functional propeties data (NFPData) is used by the planner
(see below) to decide on adaptation.

Mock mode. A monitor may also be detached from its
application and spawned on a different node where it runs
in mock mode, testing the performance of the node with the
performance model of the application (MonitorDef ) in mind,
but without actually moving the whole application. Again,
NFPData is generated which can be used by the planner.

The second component is the planner. The planner provides
the SCPi with the MonitorDefs for the monitors involved,
which the SCPi can distribute to interesting nodes for gath-
ering NFPData. Based on information about the application,
which are included in a deployment plan, the planner is able
to restrict which nodes are interesting; for example, this may
include nodes which are a limit of two hops away. Based on the
information in the NFPData from affected nodes, the planner
instructs the underlying SCPi(s) to deploy the applications
appropriately given the data.

A particular advantage of the monitor approach with mock
modes is the availability of real data: The monitor deployed
on remote nodes is able to report, based on its MonitorDef,
precisely those measurements which are relevant for the ap-
plication. As usual, the nodes which may take part in the
execution of an application form an ensemble with the specific
task to figure out the best configuration for all entities involved.

All in all, the adaptation architecture based on planners and
(mock) monitors allows for a very flexible awareness of the
network environment. While this approach is useful for all
kinds of nodes the SCP may run on, it is particularly helpful
in the presence of mobile nodes.

VIII. RELATED WORK

The topic of this paper is a vision of a peer-to-peer,
voluntary-computing-based cloud platform-as-a-service. Taken
individually, the related work in these three areas has tradi-
tionally focused on a) routing and distributed storage of data
(p2p), b) distributing workload from a central server (voluntary
computing), and c) provisioning resources inside centralized
data centers (cloud computing). Combining these areas has
started to attract attention in recent years; we believe however
that this research is far from concluded.

Voluntary clouds have been identified as a recent research
trend in a state-of-the-art survey [21] in 2010. Another survey-
type paper [22] by Panzieri et al. from 2011 also lists im-
plementing cloud implementation on top of P2P networks
as an open problem, and observes the usually centralized
nature of voluntary computing. Panzieri et al. list the work
by Babaoglu et al. from 2006 [23] as the first proposal for a
“fully decentralized P2P cloud”. The group has since followed



6

up with additional works, of which a very interesting recent
one is [24] from 2012, which implements a similar system to
the one presented here on the infrastructure-as-a-service level.

An approach to bridge volunteer and cloud computing, but
without going for a fully decentralized organization, is the
work by Cunsolo et el. [25] in 2009. There, the idea is for
users to contribute additional resources to certain centralized
components. Also in 2009, Chandra and Weissman [26] have
come up with the term Nebulas instead of clouds for dis-
tributed voluntary resource use. They list three requirements
for such systems, which we have addressed partially in this
paper.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the idea of an autonomic
cloud in the sense of a voluntary computing, peer-to-peer
based platform-as-a-service infrastructure which uses self-
awareness and self-adaptation as the main ingredients for
managing the execution of arbitrary applications.

We have shown several methods from the ASCENS project
which can be helpful for discussing, modeling, and implement-
ing such a system. Many aspects of this vision still require
further research. In particular, we are interested in further
exploring self-adaptation performance in the cloud, perform
large-scale tests, explore alternative implementation models,
and gather feedback on the methods discussed here.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the EU project
ASCENS, FP7 257414. We thank all partners who have
contributed to the cloud case study.

REFERENCES

[1] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, “On
self-adaptation, self-expression, and self-awareness in autonomic service
component ensembles,” in Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2011 Fifth IEEE Conference on. IEEE, 2011,
pp. 108–113.

[3] M. Wirsing, M. Hölzl, M. Tribastone, and F. Zambonelli, “ASCENS:
Engineering Autonomic Service-Component Ensembles,” in Formal
Methods for Components and Objects, 10th International Symposium,
FMCO 2011, ser. LNCS, B. Beckert, F. Damiani, M. Bonsangue, and
F. de Boer, Eds. Springer, 2012.

[4] “The ASCENS Project.” [Online]. Available: http://www.ascens-ist.eu
[5] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,

“Seti@home-massively distributed computing for seti,” Computing in
Science and Engineering, vol. 3, no. 1, pp. 78–83, 2001.

[6] G. Cabri, M. Puviani, and F. Zambonelli, “Towards a Taxonomy of
Adaptive Agent-based Collaboration Patterns for Autonomic Service
Ensembles,” in Proc. of CTS. IEEE, May 2011, pp. 508–515.

[7] M. Puviani and R. Frei, “Self-management for cloud computing,” in SAI
Conference, London, UK, 2013.

[8] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley, 2002.

[9] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., The Com-
mon Component Modeling Example: Comparing Software Component
Models, ser. LNCS, vol. 5153. Springer, 2008.

[10] A. Klarl and R. Hennicker, “Foundations for Ensemble Modeling - The
Helena Approach,” Submitted, 2013.

[11] G. Gottlob, M. Schrefl, and B. Röck, “Extending object-oriented systems
with roles,” ACM Trans. Inf. Syst., vol. 14, no. 3, pp. 268–296, Jul. 1996.

[12] R. Nicola, G. Ferrari, M. Loreti, and R. Pugliese, “A language-based
approach to autonomic computing,” in Formal Methods for Components
and Objects, ser. Lecture Notes in Computer Science, B. Beckert,
F. Damiani, F. Boer, and M. Bonsangue, Eds. Springer Berlin
Heidelberg, 2013, vol. 7542, pp. 25–48.

[13] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “SCEL: a
Language for Autonomic Computing,” IMT Lucca, Tech. Rep., January
2013. [Online]. Available: http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf

[14] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 329–350.

[15] Foundation for Intelligent Physical Agents, “FIPA
Contract Net Interaction Protocol Specification,”
http://www.fipa.org/specs/fipa00029/SC00029H.html, March 2013.

[16] P. Druschel, A. Haeberlen, J. Hoye, S. Iyer, A. Mislove, A. Nandi,
A. Post, A. Singh, M. Castro, M. Costa, A.-M. Kermarrec, A. Rowstron,
S. Iyer, D. Wallach, Y. C. Hu, M. Jones, M. Theimer, A. Wolman, and
R. Mahajan, “FreePastry,” http://www.freepastry.org/, March 2013.

[17] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8, pp.
1489–1499, 2002.

[18] T. Lu, S. Merz, and C. Weidenbach, “Towards verification of the pastry
protocol using tla+,” in Formal Techniques for Distributed Systems.
Springer, 2011, pp. 244–258.

[19] A. Rowstron and P. Druschel, “Storage management and caching in past,
a large-scale, persistent peer-to-peer storage utility,” in ACM SIGOPS
Operating Systems Review, vol. 35, no. 5. ACM, 2001, pp. 188–201.

[20] L. Bulej, T. Burea, V. Horký, and J. Keznikl, “Adaptive deployment in
ad-hoc systems using emergent component ensembles: vision paper,”
in Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’13. New York, NY, USA: ACM,
2013, pp. 343–346.

[21] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” J. Internet Services and Applications, vol. 1,
no. 1, pp. 7–18, 2010.

[22] F. Panzieri, Ö. Babaoglu, S. Ferretti, V. Ghini, and M. Marzolla,
“Distributed computing in the 21st century: Some aspects of cloud
computing,” in Dependable and Historic Computing, ser. Lecture Notes
in Computer Science, C. B. Jones and J. L. Lloyd, Eds., vol. 6875.
Springer, 2011, pp. 393–412.

[23] Ö. Babaoglu, M. Jelasity, A.-M. Kermarrec, A. Montresor, and M. van
Steen, “Managing clouds: a case for a fresh look at large unreliable
dynamic networks,” Operating Systems Review, vol. 40, no. 3, pp. 9–
13, 2006.

[24] Ö. Babaoglu, M. Marzolla, and M. Tamburini, “Design and implemen-
tation of a p2p cloud system,” in SAC, S. Ossowski and P. Lecca, Eds.
ACM, 2012, pp. 412–417.

[25] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, “Cloud@home:
Bridging the gap between volunteer and cloud computing,” in ICIC (1),
ser. Lecture Notes in Computer Science, D.-S. Huang, K.-H. Jo, H.-H.
Lee, H.-J. Kang, and V. Bevilacqua, Eds., vol. 5754. Springer, 2009,
pp. 423–432.

[26] A. Chandra and J. Weissman, “Nebulas: using distributed voluntary
resources to build clouds,” in Proceedings of the 2009 conference on
Hot topics in cloud computing, ser. HotCloud’09. Berkeley, CA, USA:
USENIX Association, 2009.


