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Abstract. Exploiting global interconnectedness in distributed systems,
we want autonomic components to form teams to collaborate for some
global goal. These teams have to cope with heterogeneity of participants,
dynamic composition, and adaptation.Helena advocates a modeling ap-
proach centered around the notion of roles which components can adopt
to take part in task-oriented teams called ensembles. By playing roles,
the components dynamically change their behavior according to their re-
sponsibilities in the task. In this paper, we report on the experiences of
using Helena in modeling and developing a voluntary peer-2-peer cloud
computing platform. We found that the design with roles and ensembles
provides a reasonable abstraction of our case study. The model is easy
to understand and helps to identify and eliminate communication errors
during analysis due to its solid semantic foundation. Encapsulation of
responsibilities in roles makes the implementation straightforward. Al-
though some extensions have to be added to make the realization more
robust, we believe that the Helena models are a useful abstraction of
concurrent ensembles.

1 Introduction

The development of distributed software systems, i.e. systems in which individ-
ual parts run on di�erent machines connected via some sort of communication
network, has always been a challenge for software engineers. Special care has
to be taken to the unique requirements concerning concurrency and sharing of
responsibilities. In this area, di�cult issues arise particularly in those systems
in which the individual distributed software components have a certain degree
of autonomy and interact in a non-centralized and non-trivial manner.

Such systems are investigated in the EU project ASCENS [1], where the indi-
vidual distributed artifacts are components which provide the basic capabilities
for collaborating teams. These components dynamically form ensembles to per-
form some global task. We believe that the execution and interaction of entities
in such ensembles is best described by what we call roles. They are an abstrac-
tion of the part an individual component plays in a collaboration. We claim
that separating the behavior of components into individual roles leads to an
easier understanding, modeling, and programming of ensemble-based systems.
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Our modeling approach Helena [9,12] thus extends existing component-based
software engineering methods [18] by modeling roles. Each role (more precisely
role type) adds particular capabilities to the basic functionalities of a component
which are only relevant when performing the role. Exploiting these role-speci�c
capabilities, we specify role behaviors which the component dynamically adopts
when taking over a role. For the speci�cation of role behaviors we extend [9]
by introducing a process language which allows to describe dynamic creation of
role instances on selected component instances. The structural characteristics of
collaborations are de�ned in ensemble structures capturing the contributing role
types and potential interactions.

In this paper, we report on the experiences of using Helena in modeling
and developing a larger software system. As our case study we have selected the
Science Cloud Platform (SCP) [14] which is one of the three case studies used in
the ASCENS project. The SCP is, in a nutshell, a platform of distributed, volun-
tarily provided computing nodes. The nodes interact in a peer-to-peer manner to
execute, keep alive, and allow use of user-de�ned software applications. The goal
of applying Helena to the SCP is to �nd a reasonable abstraction that serves as
clear documentation, analysis model, and guideline for the implementation. We
experienced that the Helena model helps to rigorously describe the concepts of
the SCP. During analysis of the models, communication errors can be eliminated
at early stages. As we shall discuss, the implementation also bene�ts from the
encapsulation in roles. However, during implementation some additional e�ort
is required to provide an infrastructure for using role abstractions on top of the
component-based system. Lastly, special care has to be taken to make the system
robust against communication failures and to provide communication facilities
between ensembles and the outside world which is not yet tackled in Helena.

In the following sections, we �rst describe the case study in Sec. 2. Afterwards,
we summarize the Helena modeling approach in Sec. 3 and apply it to the case
study in Sec. 4. Sec. 5 describes the realization of the Helena model on the
infrastructure of the SCP. Lastly, we report on experiences, give an outlook, and
compare our approach to related work in Sec. 6.

2 Case Study

One of the three case studies in the ASCENS project is the Science Cloud Plat-
form (SCP) [14]. The SCP employs a network of distributed, voluntarily provided
computing nodes, in which users can deploy user-de�ned software applications.
To achieve this functionality, the SCP reuses ideas from three usually separate
computing paradigms: cloud computing, voluntary computing, and peer-to-peer
computing. In a nutshell, the SCP implements a platform-as-a-service in which
individual, voluntarily provided computing nodes interact using a peer-to-peer
protocol to deploy, execute, and allow usage of user-de�ned applications. The
SCP takes care to satisfy the requirements of the applications, keeps them run-
ning even if nodes leave the system, and provides access to the deployed appli-
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cations. For a full description of the SCP, we refer to [14]. In the following, we
only discuss those parts relevant for this paper.

The SCP is formed by a network of computers which are connected via the
Internet, and on which the SCP software is installed (we call these nodes). The
layout of an SCP node is shown in Fig. 1, along with the technologies involved.
The dashed boxes are those parts contributed in the current work.

Virtual and/or Physical Machine 
  (OS Layer)

SCP Node 
  (Networking Layer)

App Execution 
  (Application Layer)

App1 App2 ...

Java OSGi

Pastry PAST

SCP Role Implementations

Gossip 
Communication

TCP/IP

SCP UI

HELENA Framework

Fig. 1: SCP architecture (new parts in dashed boxes)

The bottom layer shows the infrastructure: The SCP is a Java application
and thus runs in the Java VM; it also uses the OSGi component framework to
dynamically deploy and run applications (as bundles). In general, plain TCP/IP
networking is used to communicate between nodes on this level.

The second layer implements the basic networking logic. The SCP uses the
distributed peer-to-peer overlay networking substrate Pastry [16] for communi-
cation. Pastry works similarly to a Distributed Hash Table (DHT) in that each
node is represented by an ID. Node IDs are organized to form a ring along which
messages can be routed to a target ID. Pastry manages joining and leaving nodes
and contains various optimizations for fast routing. On top of this mechanism,
the DHT PAST allows storage of data at speci�c IDs. On this layer, a gossip
protocol [7] is used to spread information about the nodes through the network;
this information includes node abilities (CPU, RAM), but also information about
applications. Each node slowly builds its own picture of the network, pruning
information where it becomes outdated.

The third layer (shown in grey) is presented in this paper, and implements
the application execution logic based on Helena. The dashed boxes describe
the intended implementation which are discussed throughout the paper. The
required functionality of the application layer is that of reliable application ex-
ecution given the application requirements on the one hand and the instability
of the network on the other hand. This process is envisioned as follows:
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1. Deploying and undeploying: A user deploys an application using the
SCP UI (top right). The application is assigned an ID (based on its name)
and stored using the DHT (PAST) at the closest node according to the ID;
this ensures that exactly one node is responsible for the application, and this
node can always be retrieved based on the application name (we call this
node the app-responsible node). If this node leaves, the next adjacent node
based on ID proximity takes its place.

2. Finding an executor: Since each application comes with execution re-
quirements and all nodes are heterogeneous, the app-responsible node may
or may not be able to execute the application. Thus, it is tasked with �nding
an appropriate executor (based on the gossiped information).

3. Executing: Once an executor is found, it is asked to retrieve and run the
application. Through a continuous exchange of keep-alive messages, the app-
responsible node observes the executor and is thus able to select a new one
if it fails. The user may interact with the application through the SCP UI.

3 Ensemble Modeling with Helena

With Helena, we model systems with large numbers of entities which collab-
orate in teams (or ensembles) towards a speci�c goal. In this section, we sum-
marize the basic ideas and ingredients of the Helena approach [9,12] which is
centered around the notion of roles which components can adopt to form ensem-
bles. In Helena, we use role types to specify task-oriented capabilities and team
them up for task execution in ensemble structures. Role behavior speci�cations
describe the dynamic behavior of active instance of a role type and form an en-
semble speci�cation together with the ensemble structure. In Sect. 3.2 we extend
the existing Helena approach by a new language for specifying role behaviors
in terms of process expressions which allow to describe role instance creation on
certain components and role instance retrieval.

3.1 Ensemble Structures

The foundation for the aforementioned systems are components. To classify
components we use component types. A component type de�nes a set of at-
tributes (more precisely attribute types) representing basic information that is
useful in all roles the component can adopt. Formally, an attribute type is just
a named variable (for simplicity untyped) and a component type ct is a tuple
ct = (nm, attrs) such that nm is the name of the component type and attrs is a
set of attribute types.

For performing certain tasks, components team up in ensembles. Each par-
ticipant in the ensemble contributes speci�c functionalities to the collaboration,
we say, the participant plays a certain role in the ensemble which we classify
by role types. A role type determines the types of the components that are able
to adopt this role. It also de�nes role-speci�c attributes (to store data that is
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only relevant for performing the role) and it de�nes message types for outgo-
ing, incoming, and internal messages. Formally, a message type is of the form
msg = msgnm(riparams)(dataparams) such that msgnm is the name of the
message type, riparams is a list of typed formal parameters to pass role in-
stances, and dataparams is a list of (for simplicity untyped) formal parameters
for data.

De�nition 1 (Role Type). Given a set CT of component types, a role type
rt over CT is a tuple rt = (nm, compTypes, roleattrs, rolemsgs) such that

� nm declares the name of the role type,
� compTypes is a �nite, non-empty set of component types (whose instances

can adopt the role) with compTypes ⊆ CT ,
� roleattrs is a set of role speci�c attribute types,
� rolemsgs = 〈rolemsgsout, rolemsgsin, rolemsgsint〉 speci�es types for outgo-

ing, incoming, and internal messages supported by the role type.

Role types form the basic building blocks for collaboration in an ensemble. An
ensemble structure determines the type of an ensemble that is needed to perform
a certain task. It speci�es which role types are needed in the collaboration and
how many instances of each role type may contribute.

De�nition 2 (Ensemble Structure). Let CT be a set of component types.
An ensemble structure Σ over CT is a pair Σ = (roleTypes, roleConstraints)
such that roleTypes is a set of role types over CT and for each rt ∈ roleTypes,
roleConstraints(rt) ∈ Mult and Mult is the set of multiplicities available in
UML, like 0..1, 1, ∗, 1..∗, etc.

For simplicity, we do not use explicit role connector types here opposed to [9]
and assume that between (instances of) role types rt and rt ′ the messages with
the same name that are output on one side and input on the other side can
be exchanged. They are visualized in the graphical representation of ensemble
structures (cf. Fig. 2).

3.2 Role Behavior Speci�cations

After having modeled the structural aspects of ensembles, we focus on the speci-
�cation of behaviors for each role type of an ensemble structure. A role behavior
is given by a process expression built from the null process, action pre�x, nonde-
terministic choice, and recursion. In the following, we use X,Y for role instance
variables, RT for role types, x for data variables1, e for data expressions and
ci for component instances (assuming a given repository of those); #�z denotes a
list of z. There are �ve di�erent kinds of actions. A send action is of the form
X!msgnm(

#�

Y )( #�e ). It expresses that a message with name msgnm and actual

parameters
#�

Y and #�e is sent to a role instance named by variable X. The �rst

1 We distinguish between role instance variables and data variable since role instance
variables can be used as recipients for messages later on, for instance for callbacks.
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parameter list
#�

Y consists of variables which name role instances to be passed to
the receiver; with the second parameter list #�e , data is passed to the receiver.
A receive action is of the form ?msgnm(

#�

X :
#    �

RT )( #�x ). It expresses the recep-
tion of a message with name msgnm. The values received on the parameters are
bound to the variables

#�

X for role instances and to #�x for data. Internal actions
are represented by msgnm(

#�

Y )( #�e ) denoting an internal computation with cer-
tain parameters. With the action X ← create(RT , ci) a new role instance of
type RT is created, adopted by the component instance ci , and referenced by
the variable X of type RT in the sequel. Similarly the action X ← get(RT , ci)
retrieves an arbitrary existing role instance of type RT already adopted by the
component instance ci . Thus, the variables

#�

X, #�x used in message reception and
the variable X for role instance creation and retrieval open a scope which binds
the open variables with the same names in the successive process expression.
The bound variables receive a type as declared by the types

#    �

RT .

De�nition 3 (Role Behavior). Let Σ be an ensemble structure and rt be a
role type in Σ. A role behavior RoleBehrt for rt is a process expression built
from the following abstract syntax:

P ::= nil (null process)

| a.P (action pre�x)

| P1 + P2 (nondeterministic choice)

| µV.P (recursion)

a ::= X!msgnm(
#�

Y )( #�e ) (sending a message)

| ?msgnm(
#�

X :
#    �

RT )( #�x ) (receiving a message)

| msgnm(
#�

Y )( #�e ) (interal computation)

| X ← create(RT , ci) (role instance creation)

| X ← get(RT , ci) (role instance retrieval)

To be well-formed a role behavior RoleBehrt must satisfy some obvious con-
ditions: 1) For sending a message X!msgnm(

#�

Y )( #�e ) the role type rt must support
the message type msgnm(riparams)(dataparams) as outgoing message and the
actual parameters must �t to the formal ones. Moreover, X must be a vari-
able of some type RT which supports the same message type as incoming
message. Similarly, well-formedness of incoming and internal messages is de-
�ned. 2) Role instance creation X ← create(RT , ci) and role instance retrieval
X ← get(RT , ci) are well-formed if RT is a role type in Σ, and if the component
instance ci if of a type whose instances can adopt a role of type RT .

De�nition 4 (Ensemble speci�cation). An ensemble speci�cation is a pair
EnsSpec = (Σ,RoleBeh ) such that Σ is an ensemble structure, and RoleBeh is
a family of role behaviors RoleBehrt for each role type rt occurring in Σ.

In this paper, we do not focus on a formal semantics of ensemble speci�ca-
tions. However, some hints may be helpful. As a semantic basis for the evolution
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of ensembles we use ensemble automata as de�ned in [9]. The states of an en-
semble automaton show 1) the currently existing role instances of each role
type occurring in Σ, 2) for each existing role instance, a unique component in-
stance which currently adopts this role, 3) the data currently stored by each
role instance, and 4) the current control state of each role instance showing its
current progress of execution according to the speci�ed role behavior. Ensemble
automata model role instance creation as expected by introducing a fresh role in-
stance which starts in the initial state of its associated role behavior. Retrieval of
role instances delivers an existing role instance of appropriate type played by the
speci�ed component instance if there is one. Otherwise it is blocked. Concern-
ing communication between role instances �rst an underlying communication
paradigm must be chosen. The ensemble automata in [9] formalize synchronous
communication such that sending and receiving of a message is performed si-
multaneously. If the recipient is not (yet) ready for reception of the message the
sender is blocked. However, it is important to note that the communication style
is not determined by an ensemble speci�cation since the role behaviors specify
local behaviors and thus support decentralized control which is typical for the
systems under investigation. In particular, an asynchronous communication pat-
tern can be chosen as well for the realization of an ensemble speci�cation and
this is indeed the case for the ensembles running on the SCP.

4 Modeling the SCP with Helena

Let us revisit our case study from Sec. 2 to explain the bene�ts of the role-based
modeling approach for such a system. In the SCP, distributed computing nodes
interact to execute software applications. For one app, several computing nodes
need to collaborate: They have to let a user deploy the app in the system, to
execute (and keep alive) the app on a node satisfying the computation require-
ments of the app, and to let a user request a service from the app. For each
of these responsibilities we can derive a speci�c behavior, but at design time it
is unclear which node will be assigned with which responsibility. Additionally,
each node must also be able to take over the same or di�erent responsibilities
for the execution of di�erent apps in parallel. In a standard component-based
design, we would have to come up with a single component type for a comput-
ing node which is able to combine the functionalities for each responsibility in
one complex behavior. Hence, the Helena modeling approach o�ers the possi-
bility to model systems in terms of collaborating roles and ensembles. Firstly,
roles allow to separate the de�nition of the capabilities and behavior required
for a speci�c responsibility from the underlying component. Secondly, adopting
di�erent roles allows components to change their behavior on demand. Thirdly,
concurrently running ensembles support the parallel execution of several tasks
possibly sharing the same participants under di�erent roles.

In the SCP, we assume given the basic infrastructure for communication
between nodes (Pastry), storing data (PAST), and deploying and executing apps
(OSGi) (two bottom layers in Fig. 1). We apply Helena for modeling the whole
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process of application execution on top of this infrastructure. Computation nodes
represent the components underlying the Helena model.

Ensemble Structure The �rst step is to identify the required role types from
the stated requirements in Sec. 2.

1. Deploying and undeploying: For this subtask, we envision two separate
role types. The Deployer provides the interface for deploying and undeploy-
ing an app and is responsible for the selection of the app-responsible node
for storing the app code. The app-responsible node adopts the Storage role
taking care for the actual storage and deletion of the app code and initiates
the execution of the app.

2. Finding an executor: Three further roles are required for �nding the ap-
propriate execution node. The app-responsible node in the role Initiator

determines the actual Executor from a set of PotentialExecutors and
takes care that it is kept running until the user requests to undeploy the
app. A PotentialExecutor is a node which the Initiator believes is able
to execute the app based on the requirements of the app. However, it might
currently not be able to do so, e.g., due to its current load. The actual
Executor is selected from the set of PotentialExecutors and is responsible
for app execution.

3. Executing: Once started, the app needs to be available for user requests.
The Requester provides the interface between the user and the Executor

and forwards requests and responses. The Executor from the previous sub-
task gives access to the executed app.

In Fig. 2, we summarize the ensemble structure composed of these six roles
graphically. The multiplicities of the role types denote that a running ensemble
contains just one role instance per role type except for PotentialExecutor and
Requester. Labels at the connections between roles depict which messages can
be exchanged between these roles for collaboration. We explain the exchanged
messages in more detail when we focus on role behaviors. For each deployed app,
one instance of this ensemble structure is employed. Di�erent components may
take over the required roles in one ensemble, but a single component may also
adopt di�erent roles in the same ensemble. Moreover, di�erent components can
take part at the same time in di�erent ensembles under di�erent roles.

Role Behavior Speci�cations On the basis of this ensemble structure, we
specify a behavior for each role. For the roles Deployer and Storage taking
part in the �rst subtask, the role behaviors are rather straightforward and we
give only an informal description. In the initial state the Deployer waits for the
user to ask for app deployment and forwards the app code to the Storage for
archiving and vice versa for undeployment. The Storage role starts by waiting
for a request to store an app. Upon storage, it issues the creation of an Initiator

which takes care that the app is executed. Afterwards the Storage is ready to
provide the app code to an Executor or to delete it.
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Deployer 1

Storage 1
Initiator 1

PotentialExecutor ∗

Executor 1

Requester ∗

deploy()(app) undeploy()()

store()(app)
unstore()()

init()(name,reqs)
stop()()

ask(init)(name,reqs) ack(exec)()
decline()()

execute()(name)

overload()()

stop()()reqCode(exec)()

sndCode()(code)

askForExec(req)()

reportOnExec(exec)()

sendUIReq(req)() waitForUIResp()(resp)

reqFromUser()(name) informUI()(resp)

Fig. 2: Ensemble structure for app execution in the SCP

What is interesting about these two role types is which component instances
are selected to adopt the roles. The Deployer is automatically played by the com-
ponent instance where the user actually places her deployment request. When
the Deployer creates a Storage it selects the component whose ID according to
Pastry (cf. Sec. 2) is next to the ID of the app (given by the hash value of the
app name). The uniqueness of component selection is essential since for any later
communication with the Storage, e.g., for code retrieval, it must be possible to
identify the owning component instance just from the app's name. For the same
reason, we choose the owning component of the Storage to additionally adopt
at the Initiator role.

The behavior of the Requester is also straightforward and is again informally
described. In the initial state, a Requester waits for the user to request a service
from the app. It retrieves a reference to the Executor from the Initiator2 and
forwards the request to the Executor. It gets back a response from the Executor
which it routes to the user. The part played by the Executor in this scenario is
depicted in Fig. 3c by the loop between states e5 and e6.

The most interesting behavior concerns the selection of an appropriate ex-
ecutor. In Fig. 3, we translated the process terms of each role behavior into a
labeled transition system which makes it easier to explain. The main idea is that
the initiator of an app asks a set of potential executors, one after the other, for
execution of the app until one of them accepts. Since each node maintains a list
of all other nodes and their abilities through a gossip protocol (cf. Sec. 2), the
initiator can easily prepare this list of nodes satisfying the requirements of the
app based on its current belief of the network. Triggered by the reception of the

2 Note that for communication with the Initiator its owning component must be
uniquely identi�able as mentioned before.
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init message, the Initiator starts to walk through the list. It �rst creates a
new PotentialExecutor on the next node satisfying the requirements and asks
it for execution. If it declines, the next node satisfying the requirements is asked
until one accepts (states i1 to i4). As soon as a PotentialExecutor accepts,
the Initiator waits for one of three messages in state i4: 1) an overload mes-
sage meaning that the current Executor is not able to execute the app anymore
and the Initiator has to �nd a new one, 2) a request for the reference to the
Executor (issued by a Requester), or 3) a stop message triggering stopping the
execution of the app on the Executor.

The behavior of a PotentialExecutor starts with waiting for a request for
app execution. If it does not satisfy the requirements of the app (like current
load), it internally decides to refuse and sends back a decline message. Oth-
erwise, it creates a new Executor on its owner, issues the execution, and ac-
knowledges execution to the Initiator. An Executor starts by waiting for an
execute message. Then the Executor retrieves a reference to the Storage, re-
quests and gets the app code from it and starts execution of the app (states
e1 to e5). As soon as the app has been started, the Executor can answer user
requests or stop execution due to internal overload or an external stop request.

Analysis The role behaviors provided by an ensemble speci�cation can be used
to analyze the dynamic behaviors of ensembles before implementing the system.
A particularly important aspect concerns the avoidance of communication er-
rors when role instances communicate. Two types of errors can be distinguished.
Firstly, an instance expects the arrival of a message which never has been is-
sued. Secondly, an instance sends a message, but the recipient is not ready to
receive. Let us analyze the latter type of communication error by considering
the cooperation between Initiator and PotentialExecutor. The only output
action occurring in RoleBehInitiator which is addressed to a PotentialExecutor
is the message ask occurring in state i2. It is sent to the PotentialExecutor,
named by the variable pot, which has just been created in state i1. This po-
tential executor starts in its initial state p0 in which it is obviously ready to
accept the message ask. Afterwards, the Initator is in state i3 and is ready to
receive either a decline or an ack message which both can only be sent from
the PotentialExecutor. After the reception of ask the PotentialExecutor is
in state p1 and it has two options: 1) It can decide to refuse the request and
sends the message decline which the Initiator accepts being back in state i1.
In this case, the current PotentialExecutor terminates, a new one is created,
the Initiator goes to state i2, and we are in a situation which we have already
analyzed. 2) The other option in state p1 is to accept the execution request, to
create an Executor, to cause the Executor to start execution and then to send
the message ack to the Initator who is still in state i3 and takes the message.
So the instances of both roles, Initator and PotentialExecutor, work well
together. Interestingly this holds whether one uses synchronous or asynchronous
communication in the implementation. How such an analysis can be performed
on the basis of formal veri�cation is a challenging issue of future research.
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Limitations At this point, we want to mention some restrictions underlying
the current Helena approach. Firstly, we rely on binary communication and do
not support broadcast yet. Though broadcast sending could be easily integrated
in our process expressions, to collect corresponding answers would still be an
issue. Secondly, we build ensemble speci�cations on a given set of components
such that we cannot model situations in which components fail. However, we are
aware that one of the main characteristics of our case study is that nodes may
fail and leave the network at any time. We wish that such failovers are handled
transparently from the role behaviors. The idea is that components are monitored
such that when failing all adopted roles are transparently transferred to another
component and restarted there. A further issue concerns robustness since we
assume reliable network transmission in our models. We do not want to include
any mechanisms for resending messages in the role behavior speci�cations. Like
failover mechanisms, this should be handled transparently by an appropriate
infrastructure.

5 Using the Helena Model for the SCP Implementation

In this section, we report on the experimental realization of the Helena model3.
Helena separates between base components and roles running on top of them.
The SCP is already built on components (the SCP Node layer in Fig. 1); thus,
the Helena implementation can build on the given infrastructure and realize
the application layer shown by the dashed boxes in Fig. 1 by a role-based im-
plementation as envisioned in the Helena approach.

When modeling the application layer we leveraged the notions of ensembles,
roles, and role-speci�c functionalities like the exchange of messages. However, a
direct translation of the Helena model on the given SCP infrastructure would
not be able to bene�t from these abstractions and would include a lot of boiler
plate code to map the role behaviors to the Pastry peer-to-peer routing substrate.
We have thus opted to create a layer between the Pastry API and the role behav-
ior implementations. ThisHelena framework amounts to around 1000 LOC and
o�ers role-related functionality, such as the ability to create and retrieve roles
via the network, and routing messages between roles. (This layer implements
the same basic ideas already presented in the Helena framework [12], but is
based on the SCP and thus, Pastry). In a second step, we have translated the be-
havioral speci�cations of the six roles to Java code using the previously created
framework. Each of the role implementations stays below 150 LOC with another
400 LOC in message classes. In the following two subsections we discuss the
framework and role implementations, respectively, stressing where direct trans-
lation of the Helena model was possible and where special care had to be taken
to make the realization robust.

3 The code can be retrieved from http://svn.pst.ifi.lmu.de/trac/scp, version v3
of the node core implementation with gossip strategy.
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5.1 Implementing the Helena Framework

A framework for implementing role behaviors needs to o�er several features to
role implementors.

Structural Aspects The most important concept in Helena are roles. Thus, the
framework must o�er the ability to create role types, and to instantiate and
execute them. This maps quite naturally to using one Java class per role type,
and instantiating this class for role instances. A registry on each node stores all
instances currently adopted by the node and allows their retrieval. To enable
concurrent execution, each role instance is realized as a Java thread, running
locally in the OSGi container of the current node.

The framework provides means to create, retrieve, and address existing roles
on other nodes; this requires a way of addressing roles. Thus, the second impor-
tant structural aspect is addressing. In Pastry, each node is already identi�ed by
a unique 160-bit identi�er. It is relatively straightforward to add a similar unique
identi�er for roles. However, there is also another kind of structuring element
which is not directly visible in the behavioral speci�cations: The ensemble which
constitutes the environment for the roles. This can clearly be seen when looking
at the functions the framework needs to o�er for role handling � these are the
create and the get functions. Both require knowledge about which ensemble is
addressed for creating a new role or where to look for an existing role. We have
thus three identi�ers in use in the Helena framework: The node identi�er (for
addressing nodes using Pastry), the ensemble identi�er (for creating new roles
and retrieving existing roles) and the role identi�er (which uniquely identi�es
one role instance).

Behavioral Aspects This discussion already brings us to the behavioral aspects of
the framework. Two functions of the framework were already mentioned � create
and get. They are implemented as the Java methods (createRoleInstance and
getRoleInstance) which both perform a full network round-trip between two
Pastry nodes: They require a node and an ensemble ID as well as the class of
the required role as input. The target node is instructed to create and start the
new role (or retrieve it, in the second case). A role identi�er as discussed above
is returned which can then be used for role-to-role message routing.

The behavioral speci�cations make heavy use of role-to-role communication.
A role must be able to send a message and to expect to receive a certain mes-
sage in its behavior. For this purpose the framework provides the two methods
sendMessage() and waitForMessage() for communication between roles.

The method sendMessage() takes a message and a target role; the mes-
sage is routed between Pastry nodes to an input bu�er in the target role. The
method only returns when this has been successfully completed (i.e., an inter-
nal acknowledge is sent back upon which the sendMessage() function returns
normally). Otherwise, an exception is raised. Of course, safe communication re-
quires that any message is �nally consumed from the bu�er. Moreover, from the
semantic point of view it is required that any consumed message is also expected
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by the target role as an input message in accordance with its role behavior spec-
i�cation. For this purpose we perform behavioral compatibility checks between
role behaviors already during the ensemble modeling phase as discussed in Sec. 4.

The second method is waitForMessage() which instructs the framework to
wait for a message of a certain type, or a selection of certain di�erent types. The
latter is required, for example, in the Initiator role when waiting for one of
three possible messages in state i4 in Fig. 3a. The waitForMessage() function
also takes a timeout value; an exception is raised if a message does not arrive in
the given time (though specifying INFINITY is an option).

Given the basic infrastructure for role management and the communication
functions above, we can now proceed to the role implementations.

5.2 Implementing Roles

As discussed above, role (types) are implemented in Java using classes. Thus,
for each of the six roles above, a class is created, inheriting from an abstract role
template for easier access to framework methods. Each role is instantiated within
a certain ensemble and node. Upon startup, the main method implementing the
role behavior is called.

The role behavior speci�cations are translated to message exchanges. For
each message type, a message class with an appropriate name is created, and
equipped with the required parameters as indicated in the role types. For ex-
ample, the execute message shared between PotentialExecutor and Executor

is implemented by an instance of the ExecuteMessage class which carries the
application name as a �eld.

A role behavior is translated into Java as follows:

� Transitions with incoming messages, e.g. ?store()(app), are translated into
a waitForMessage() framework call for the corresponding message class,
e.g. StoreApplicationMessage. The waitForMessage() method returns an
instance of the message once received, which can be queried for the actual
app.

� Transitions with an outgoing message, e.g. !init()(name,reqs), are trans-
lated into a sendMessage() framework call. The message to be sent must
be given as a parameter.

� Transitions referring to the two framework functions get and create are di-
rectly translated to calls to the corresponding framework methods
getRoleInstance() and createRoleInstance(). They return role IDs
which can then be used for communication.

� All other transitions, as well as loops and decisions are translated into their
appropriate Java counterparts.

With this basic description, most of the role behaviors are directly trans-
latable into Java code. Thus, many communication errors are avoidable by a
careful analysis of the ensemble model. Nevertheless, we were interested in a
robust system implementation and hence we followed a defensive strategy such
that all possible types of errors are taken into account.
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One issue in the implementation is that each of the framework methods may
fail for various reasons, and the resulting exceptions must be handled. Firstly, in
all operations, timeouts may occur if a message could not be delivered. Secondly,
role-to-role messages may fail if the target node does not (yet) participate in the
expected ensemble or does not (yet) play an expected role; this also applies to
the getRoleInstance() method. The createRoleInstance() may fail if the
role class could not be instantiated or started. These errors are not captured
in the role behaviors, but may occur in practice (in particular, they may occur
during development if the implementation is not yet fully complete and stable).

A second issue is bootstrapping, both of Helena ensembles and of basic node
identi�cation. At each ensemble startup, at least one role needs to be instantiated
by an outside party before messages can be received. In this case study, the main
entry point is the Deployer role; a second entry point is the Requester role. The
bootstrapping point cannot be deduced from the local behavior speci�cations
and therefore must be treated individually outside of the framework. In the case
of the SCP, this part is played by the SCP UI (top right in Fig. 1).

There are also some points where the roles need to return information to an
outside party. For example, the Requester role is invoked each time a UI request
is made for an app; the response from the application must be presented to the
user. This is exactly the opposite of the bootstrapping problem and requires ex-
plicit invocation of an outside party from the role. One could think of specialized
actions for this; or introduce answers a role in general gives to users.

Basic node identi�cation is another topic of interest: To create a role, the ID
of the target node must be known. In the case of the SCP, we heavily rely on the
fact that the Initiator and Storage node ID can always be found using the app
name (as explained in Sec. 2). This makes both of these roles communication
hubs. If such a mechanism is not available, other forms of node ID retrieval
need to be found; one example is the Initiator role which uses the underlying,
gossip-provided node information as an ID source. A similar problem applies to
�nding ensembles: A node which does not currently have a role in an ensemble
does not know the ensemble ID and thus cannot route messages, which might
occur in a formerly non-associated node on which a Requester is instantiated.
We solve this again by using the app name as a hash for the ensemble ID, but
this might be di�cult in other settings.

6 Conclusion

We have shown how the Helena modeling approach can be applied to a larger
software system. Starting from the description of our case study, the Science
Cloud Platform, we developed an ensemble speci�cation based on six collab-
orating roles. An instance of this speci�cation is able to deploy and execute
a software application in a voluntary peer-to-peer network. Splitting the task
of app execution in several independent roles was quite natural and helped to
understand the individual subtasks. Compared to the development of one big
component which combines all behaviors at one place, it was straightforward
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to derive behaviors for each role individually. However, we experienced that the
granularity when deciding which roles to introduce was not always clear. Us-
ing the Helena modeling approach allowed us to examine the modeled system
for communication errors before implementation. During implementation of the
model, translating the role behaviors to Java code has proven to be straightfor-
ward. To gain this complexity reduction, �rst a (reusable) Helena framework
layer was needed to provide Helena-speci�c functionalities. The encapsulation
of responsibilities in separate roles helped to make the SCP code clean and easy
to understand. Special care had to be taken in four areas: Handling faults during
communication, node identi�cation for role creation and retrieval, handling node
failures, and communication between ensembles and the outside world.

In the future, we want to pursue di�erent research directions. In [9], we have
given a formal semantics for ensemble speci�cations in terms of ensemble au-
tomata. In a next step we want to de�ne rules for the generation of an ensemble
automaton from an ensemble speci�cation based on the new process expres-
sions for role behaviors. Secondly, based on the ensemble automaton, we want to
de�ne when an ensemble can be considered communication-safe (for static archi-
tectures, called assemblies, this has been considered in [10]). We want to inves-
tigate conditions under which communication-safety of an ensemble automaton
can be derived from pairwise behavioral compatibility of role behaviors. Thirdly,
we want to support the composition of large ensembles from smaller ones and
to study which properties can be guaranteed for the composed system. Lastly,
we want to construct an infrastructure for Helena models that can cope with
unreliable systems and failing components.

Combining the three paradigms of cloud computing, voluntary computing,
and peer-to-peer computing has started to attract attention in recent years. Most
approaches bridge volunteer and cloud computing for infrastructure-as-a-service
systems. Cunsolo et al. [5], and Chandra and Weissman [4], they propose to use
distributed voluntary resources with an architecture similar to our three-layered
approach, but with a centralized management subsystem. Advocating a �fully
decentralized p2p cloud�, Babaoglu et al. [2] implement a system very similar to
the SCP. They also introduce the idea of partitioning the system in slices match-
ing a user's request. The idea is to create a subcloud in the system providing
resources for one task. This resembles our approach of assembling nodes in task-
oriented ensembles. With Helena, we o�er a modeling method for describing
such task-oriented groups with a solid semantic foundation. Modeling evolving
objects with roles as perspectives on the objects has been proposed by various
authors [13,17], but they do not see them as autonomic entities with behavior
as we do in Helena. For describing dynamic behaviors, we share ideas with
di�erent process calculi [6,8], but we use dynamic instance creation for roles on
selected components. The idea to describe structures of interacting objects with-
out having to take the entire system into consideration was already introduced by
several authors [11,3,15], but they do not tackle concurrently running ensembles
of autonomic entities. We believe that these frameworks were never employed to
implement a (role-based, voluntary and peer-to-peer) cloud computing platform.
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