
Design and Implementation of Dynamically
Evolving Ensembles with the HELENA Framework

Annabelle Klarl
Ludwig-Maximilians-Universität München

Munich, Germany
Email: klarl@pst.ifi.lmu.de

Rolf Hennicker
Ludwig-Maximilians-Universität München

Munich, Germany
Email: hennicke@pst.ifi.lmu.de

Abstract—Ensembles are collections of autonomic entities
which collaborate to perform certain tasks. They show typically
a complex dynamic behavior which is difficult to implement with
state of the art development techniques. In this paper, we present
a systematic methodology for the design and implementation
of ensemble-based systems which goes beyond component-based
development. A conceptual key point of our approach (elaborated
in [1]) is that components can adopt different roles and that
they can participate (under certain roles) in several, possibly
concurrently running ensembles. In this paper, we present a
novel developer framework that extends the component-based
approach by explicitly taking into account roles and ensembles.
The framework implementation follows rigorous rules formalized
in terms of ensemble-structures and ensemble automata. Its
application is demonstrated by a peer-2-peer file system network.

I. INTRODUCTION

The vision of autonomic computing [2] drives the devel-
opment of cutting-edge software systems. We no longer want
to create systems which are thoroughly administrated by hand.
Once employed, the system should rather manage itself, keep
itself alive and running. At the same time, ubiquitous com-
puting [3] and global interconnectedness introduce more and
more nodes into our systems. They become highly distributed
and need to operate in diverse and changing environments.
Those systems challenge us to think of designs for autonomic
systems with large numbers of autonomic nodes in many
concurrently running teams, each fulfilling its global goal
despite unforeseen and changing conditions. We even have to
cope with changing compositions of teams while maintaining
the overall functionality of the system.

The EU project ASCENS [4], [5] pursues the goal to
develop foundations, techniques, and tools to construct those
autonomic systems exhibiting complex interaction behaviors
between highly dynamic and distributed nodes in diverse
and changing environments. The basic building blocks are
components which provide the main functionalities. These
dynamically form ensembles to collaborate for some global
goal. Following [6], [7], we distinguish between “achieve
goals”, meaning that the ensemble has to reach a desired state,
and “maintenance goals”, expressing that the ensemble needs
to maintain a desired property throughout its execution. Well-
known techniques, like component-based software engineer-
ing [8], [9], are not sufficient to model the dynamics and
requirements of ensemble-based systems. Component systems
describe the architecture of a target system. Ensembles are built
on top of that as goal-oriented communication groups such

that components dynamically adopt different responsibilities.
Therefore, we need to be able to model that components can
join and leave ensembles without breaking the overall function-
ality of the ensemble, that they can dynamically change their
behavior according to their current role in an ensemble, and
that they can even take part concurrently in different ensembles
under ensemble-specific roles.

In the HELENA approach [1], we propose a modeling
technique centered around the notion of roles teaming up in
ensembles. The foundations of such ensemble-based systems
are components which provide basic capabilities available in
all roles the component can play. On top of that, we define
roles, more precisely role types, which are able to take over
responsibilities for a certain part of the ensemble task. Each
role type must be supported by at least one component type
whose instances are able to adopt that role. The role types
add role-specific attributes and communication abilities. To
define the structural characteristics of collaborations we use
ensemble structures. They define which role types are needed
in a collaboration and determine which role types may interact
by which message types, specified by role connector types.
This introduces a level of security since other interactions
are not legal. Besides the structural architecture of ensembles,
we specify the dynamic behavior of each role type with a
labeled transition system. An ensemble specification defines
an ensemble structure together with behavior specifications
for all involved roles, thus determining the collaboration
needed to solve a specific task. The HELENA approach also
provides a formal semantics for ensemble specifications. It
introduces an execution model such that the evolution of
an ensemble is described by an ensemble automaton. The
states of an ensemble automaton describe the currently existing
role instances and which component instances currently adopt
which roles. The transitions model either message exchange
between role instances (along a connector) or management
operations expressing that a component will either adopt or
give up a certain role in the next ensemble state. Any ensemble
automaton follows general preconditions for firing transitions
and postconditions determining the effects of dynamically
changing ensemble compositions.

In this paper, we present the architecture and implemen-
tation of a novel developer framework for the realization
of ensemble-based systems following the HELENA modeling
approach of [1] (the framework can be downloaded from [10]).
The goal of the framework is, on the one hand, to implement
the structural and dynamic rules enforced by both ensemble

specifications and ensemble automata and, on the other hand,
to facilitate the implementation of concrete ensemble systems.
The framework contains two layers, a metadata layer and a
developer interface. With help of the metadata layer, the
user can define ensemble structures. For that, the metadata
classes must be instantiated by objects which represent the var-
ious kinds of types that can occur in an ensemble structure, like
role types, message types, etc. Thus an ensemble structure is
represented by a net of objects which are linked in accordance
with the general rules for ensemble structures. For instance, an
ensemble structure can only contain role connector types which
connect role types declared in the same ensemble structure.
Restrictions like this are expressed by OCL constraints whose
satisfaction is controlled by the framework.

The developer interface contains abstract base classes
to implement concrete components, roles, messages, etc. They
are related to the metadata classes by associations determining
types. For instance, the developer interface contains an abstract
class Role with an association to the metadata class RoleType
such that any concrete role instance is associated with a unique
(role) type. The abstract classes of the developer interface
must be extended by the system developer to implement
concrete ensembles in accordance with a particular ensemble
structure (defined on the metadata level). Most importantly, for
each concrete role class the behavior of the instances of that
role must be realized. The framework prescribes that any role
instance is an active object implemented as a thread whose run
method executes the role behavior. Behavior implementations
rely on message exchange between roles and management
operations as specified in ensemble automata. For message
exchange the framework offers connectors of appropriate types
that establish physical connections between role instances.
The framework controls that only connections allowed by the
ensemble structure to which the role instances belong can be
established. It also ensures that the rules for the transitions
of ensemble automata are implemented in a correct way by
respecting OCL pre- and postconditions derived from the pre-
and postconditions of the transitions.

The development of both framework layers was driven
by a systematic realization of the abstract concepts and rules
of ensemble structures and ensemble automata. Additionally,
the framework contains a system manager class which must
be extended for a particular application such that specific
ensemble structures can be instantiated and components and
ensembles can be created and run, possibly concurrently. The
system manager controls that first the components are created
since they must be usable - under appropriate roles - in many
ensembles. They can dynamically join and leave ensembles (by
adopting or giving up particular roles); they can play different
roles at the same time in the same ensemble, and they can
also participate in several ensembles at the same time under
various roles, provided that the role type is supported by the
type of the component.

The paper is organized as follows: In Chapter II, we
summarize the HELENA approach for ensemble modeling
using ensemble specifications and ensemble automata. Chap-
ter III presents our framework for implementing ensemble-
based systems. Ensemble modeling and implementation are
illustrated by a small case study. We finish with a discussion
of related work and concluding remarks in Chapter IV.

II. ENSEMBLE MODELING

In this chapter, we give an overview the HELENA approach
for modeling ensembles; cf. [1].

Notation 1: In the following, whenever we work with
tuples t = (t1, . . . , tn), we use the notation ti(t) to refer to ti.

A. Ensemble Structures and Specifications

In the HELENA approach, we tackle systems with a large
number of entities which collaborate towards a specific goal.
The foundation for those systems are components. To classify
components we use component types. A component type
defines a set of attributes (more precisely attribute types)
representing kernel information that is useful in all roles
the component can adopt.1 Formally, an attribute type is
just a named variable and a component type ct is a tuple
ct = (nm, attrs) such that nm is the name of the component
type and attrs is a set of attribute types.

Components can collaborate to perform certain tasks. For
this purpose, they team up in ensembles. Each participant
in the ensemble contributes specific functionalities to the
collaboration, we say, the participant plays a certain role
in the ensemble. To classify the roles that components can
play we use role types. A role type determines first the
types of the components that should be able to adopt this
role. It also defines role-specific attribute types (to store data
that is only relevant for performing the role) and it defines
message types for those messages which are sent or received
in order to fulfill the responsibilities of the role. Formally,
a message type is of the form msg = msgnm(params)
such that msgnm is the name of the message type and
params is a list of untyped formal parameters. Given a set
CT of component types, a role type rt over CT is a tuple
rt = (nm, compTypes, roleattrs, rolemsgs) such that

• nm declares the name of the role type,

• compTypes is a finite, non-empty set of component types
(whose instances can adopt the role) with compTypes ⊆
CT ,

• roleattrs is a set of role specific attribute types,

• rolemsgs = 〈rolemsgsout, rolemsgsin〉 specifies types for
outgoing and incoming messages supported by the role
type.

To collaborate on tasks, roles need to communicate. A role
can initiate information transfer via the call of an outgoing
message and it can receive information via the reception
of an incoming message. However, for the specification of
collaborations we do not only want to declare communication
abilities for each single role as given in the declaration of a
role type, but we also want to specify which roles are meant
to interact by which messages. This information is specified
by a role connector type which is directed from a source role
type to a target role type.

1We do not use component operations here, since we focus on message
exchange between roles.

Given a set RT of role types, a role connector type over
RT is a tuple rct = (nm, srcType, trgType,msgs) such that

• nm is the name of the role connector type,

• srcType ∈ RT denotes the source role type from which
information is transferred along rct ,

• trgType ∈ RT denotes the target role type to which
information is transferred along rct , and

• msgs is a set of message types supported by rct such that
msgs ⊆ rolemsgsout(srcType) ∩ rolemsgsin(trgType).

Role types and role connector types form the basic build-
ing blocks for collaborations in an ensemble. An ensemble
structure determines the type of ensembles that are needed
to perform a certain task. It specifies which roles must be
available to contribute to the collaboration and which role
connectors are required for interaction between those roles.
Thus, an ensemble structure specifies the structural aspects of
a collaborating ensemble.

Definition 1 (Ensemble Structure): Let CT be a set of
component types. An ensemble structure Σ over CT is a pair
Σ = (roleTypes, rconnTypes) such that

• roleTypes is a set of role types over CT such that each
rt ∈ roleTypes has a multiplicity mult(rt) ∈ Mult and
Mult is the set of multiplicities available in UML, like
0..1 or ∗,

• rconnTypes is a set of role connector types over
roleTypes such that for each rct ∈ rconnTypes , it holds
srcType(rct), trgType(rct) ∈ roleTypes .

The multiplicitiy associated to each role type specifies how
many instances of that role type may (or must) participate in an
ensemble. An ensemble structure Σ is closed if each message
type supported by some role type of Σ is used in some role
connector type of Σ. In this paper, we consider only closed
ensemble structures.

After having modeled the structural aspects of ensembles,
we focus on the specification of dynamic behaviors for each
role type. Starting from an initial state, a role behavior spec-
ifies the sequences of messages exchanged by the role. For
the specification of role behaviors, we use labeled transition
systems whose labels express either sending (denoted by “!”)
or receiving (denoted by “?”) a message along a role connector.
Let Σ be an ensemble structure and rt ∈ roleTypes(Σ). A
role behavior of rt is given by a labeled transition system
RoleBehrt = (Q , q0 ,Λ,∆) such that

• Q is a set of control states,

• q0 ∈ Q is the initial state,

• Λ is the set of labels given by
{rctnm.msg ! | ∃rct ∈ rconnTypes(Σ) :

rctnm = nm(rct), rt = srcType(rct),
msg ∈ msgs(rct)} ∪

{rctnm.msg? | ∃rct ∈ rconnTypes(Σ) :
rctnm = nm(rct), rt = trgType(rct),
msg ∈ msgs(rct)},

• ∆ ⊆ Q × Λ×Q is a transition relation.

The full specification of all structural and dynamic aspects
of an ensemble determines the type of the collaboration in
terms of an ensemble structure Σ and a set of all associated
role behavior specifications, one for each role type.

Definition 2 (Ensemble specification): An ensemble spec-
ification is a pair EnsSpec = (Σ,RoleBeh) such that

• Σ is an ensemble structure, and

• RoleBeh = (RoleBehrt)rt∈roleTypes(Σ) is a family of role
behaviors RoleBehrt .

B. Example: File Transfer Ensemble

We want to illustrate the specification of ensembles at a
peer-2-peer network supporting the distributed storage of files
which can be retrieved upon request. We start by defining the
underlying component system comprising the basic component
type Peer. A Peer has the attributes address, fileNames, and
contents, the latter storing the contents of the files whose
names are given by the attribute fileNames. For the visual-
ization of the component type, we use a UML-like graphical
notation (cf. Fig. 1). We assume that single components of
type Peer are organized according to some predefined network
topology, for instance as a component ring.

Figure 1: Component type Peer

In the second step, we specify the roles that peer compo-
nents may adopt to perform a file transfer scenario. When a file
is requested, several peers of the network collaborate within
an ensemble. One peer plays the role of the requester of the
file. Before downloading the file it must first figure out the
address of the peer which stores the desired file. The search
for the address is done by iterativeley forwarding the address
request along the network structure. The peers that forward the
address request (and send the answer back) play the role of a
router. If a router determines that it has the requested file it will
adopt the role of a provider. Finally, the requester downloads
the file directly from the provider. We model the different roles
with the role types Requester, Router and Provider. For their
visualization we use again a UML-like notation with a new
stereotype for modeling role types; cf. Fig. 2. After the name
of the role type, the set of component types is listed, in this
case just Peer, which are able to adopt the role. Afterwards,
role-specific attributes are listed. Only the requester has a role-
specific attribute for storing the name of the requested file,
but they all use the kernel attributes of the component type
Peer to access their stored files. When communicating, they
interact with role-specific messages which we will explain in
the following. A requester must be able to request the address
of the provider from a router and receive the reply. For this
purpose, we introduce the message types reqAddr(fn) and
sndAddr(addr). Messages of the former type are used as
outgoing messages of a requester and incoming messages of a
router while messages of the latter type are used as incoming
messages of a requester and outgoing messages of a router.

When a requester got to know the address of the peer storing
the file, it must be able to request the file from the provider
and receive the content. For this purpose, we introduce the
message types reqFile(fn) and sndFile(cont), the former
for outgoing messages of the requester and incoming messages
of the provider and the latter for incoming messages of the
requester and outgoing messages of the provider. Finally, a
router must be able to forward address requests to another
router and to receive replies from another router. Therefore,
the router role uses messages of the type reqAddr(fn) also as
outgoing messages and messages of the type sndAddr(addr)
also as incoming messages.

Figure 2: Role types Requester, Router and Provider

To specify which message types can be exchanged between
which role types, we introduce role connector types. For
instance, messages of type reqFile(fn) can only be sent from
a requester to a provider. This is modeled by the role connector
type ReqFileConn which is graphically represented in Fig. 3.
On the other hand, messages of type reqAddr(fn) can be sent
from a requester to a router and also from a router to a router.
Hence, we need two role connector types for this message,
ReqAddrConn and FwdReqAddrConn, the former directed from
Requester to Router and the latter directed from Router to
Router. The other role connector types are found analogously.

Figure 3: Role connector types ReqAddrConn,
FwdReqAddrConn, and ReqFileConn

In the next step, we compose role types and role connector
types to define an ensemble structure Σtransfer for file transfer
ensembles on top of peer-2-peer networks. All aforementioned
role types participate in the ensemble structure, but each with
a different multiplicity. There may be at most one component
playing the role of a requester and one for the provider role.
However, arbitrarily many components may be involved as
routers. The aforementioned role connector types are employed
to exchange messages. We visualize ensemble structures sim-
ilarly to collaborations in composite structure diagrams in
UML 2. Fig. 4 shows the ensemble structure Σtransfer in
graphical notation.

Lastly, we specify the dynamic behavior of the three roles
of the ensemble structure Σtransfer by the role behaviors

Figure 4: Ensemble structure Σtransfer

RoleBehRequester, RoleBehRouter, and RoleBehProvider shown
in Fig. 5. In the figure, we use abbreviations for the role
connector types; for instance rac stands for ReqAddrConn and
frac for FwdReqAddrConn. All behaviors terminate in a final
state since in this application we consider an achieve goal such
that an ensemble stops when it has fulfilled its task. The spec-
ifications describe the required message exchange sequences
of each role type. The behaviors of the roles Requester and
Provider are specified as expected. However, a Router can
first receive either a request address message from a requester,
using the connector rac, or a request address message from
(another) router, using the forward request address connector
frac. In each case, when a request is received, the router
has the choice to forward the request further, if it does not
have the requested file, or to send its address back otherwise.
This example illustrates that the separate consideration of roles
facilitates significantly the specification of ensemble-based
systems. If we would talk only on components, a complex
component behavior specification would be needed subsuming
all the different cases.

C. Ensemble Automata

Now, we turn to an execution model for ensembles.
Ensembles evolve over time by message exchange between
collaborating roles or by performing management operations.
For the formalization of system evolution, we use again labeled
transition systems, but this time, in contrast to role behaviors,
the states represent concrete ensemble states and the labels
at the transitions represent either concrete messages (with
actual parameters) exchanged by role instances or management
operations.

Ensemble state. Given an ensemble structure Σ, an en-
semble state σ has to record four kinds of information:
1) The currently existing instances of each role type occurring
in Σ. 2) For each existing role instance, a unique component
instance which currently adopts this role. 3) The data currently
stored by role instances. 4) The current control state of each
role instance showing the current progress of the execution
of its role behavior. An ensemble state σ represents this
information as shown by the four items below. It is defined
relative to a given set of component instances.2

2Since component instances are of global nature and can be used across
different ensembles, they do not belong themselves to an ensemble state.

qreq
0 qreq

1 qreq
2 qreq

3 qreq
4

rac.reqAddr(fn)! sac.sndAddr(addr)? rfc.reqFile(fn)! sfc.sndFile(cont)?

(a) RoleBehRequester

qrout
0

qrout
1 qrout

2 qrout
3

qrout
4

qrout
5 qrout

6 qrout
7

rac.reqAddr(fn)?

frac.reqAddr(fn)! fsac.sndAddr(addr)?

sac.sndAddr(addr)!

sac.sndAddr(addr)!

frac.reqAddr(fn)?

frac.reqAddr(fn)! fsac.sndAddr(addr)?

fsac.sndAddr(addr)!

fsac.sndAddr(addr)!

(b) RoleBehRouter

qprov
0 qprov

1 qprov
2

rfc.reqFile(fn)? sfc.sndFile(cont)!

(c) RoleBehProvider

Figure 5: Behavior specifications

Definition 3 (Ensemble state): Let Σ be an ensemble
structure over a set CT of component types and let
INST =

⋃
ct∈CT (INST ct) be the union of pairwise

disjoint sets INST ct of component instances with type
ct . A Σ-ensemble state (over INST) is a tuple σ =
(roleinsts, adoptedBy , roledata, control) such that:

1) roleinsts =
⋃

rt∈roleTypes(Σ)(roleinstsrt) is the union of
pairwise disjoint sets roleinstsrt of role instances with
type rt such that the multiplicities mult(rt) are respected,
e.g. |roleinstsrt | ≤ 1 if mult(rt) = 0..1.

2) adoptedBy = (adoptedByrt)rt∈roleTypes(Σ) is a family of
functions
adoptedByrt : roleinstsrt →

⋃
ct ∈ compTypes(rt)

INST ct

3) roledata = (roledatart)rt∈roleTypes is a family of func-
tions roledatart : roleinstsrt → [roleattrs(rt) → D],
associating a mapping that assigns values in a universal
data domain D to the attributes of each currently existing
role instance of type rt .

4) control = (controlrt)rt∈roleTypes is a family of functions
controlrt : roleinstsrt → CStatesrt such that CStatesrt
is a set of control states.

We say that a component instance ci ∈ INST participates
in an ensemble in a state σ if it is in the image of some
adoptedBy function. The set of all Σ-ensemble states is
denoted by StatesΣ.

Let us illustrate the definition of a Σ-ensemble state at
our peer-2-peer network. Consider the ensemble structure
Σtransfer and four component instances of type Peer such
that INST = INST Peer = {p1, p2, p3, p4}, i.e. we have
given a system with four peers. A valid ensemble state over
INST could be that p1 has adopted the role of a requester
that requests a file with name "song.mp3", p2 and p3 work
as routers, and p3 provides the file; p4 is not involved in
this collaboration. A graphical representation of this state

is shown in Fig. 6. The current control state of each role
instance is shown in a circle and taken from the role behavior
specifications. For instance, rout1 being in control state qrout2
has just sent out a request address message to another router via
the role connector frac, and rout2 being in control state qrout5
has just received this message. We assume that the component
p3 stores the requested file and therefore adopts, in the current
state, also the role of a provider being in the initial provider
state qprov0 .

Figure 6: A Σtransfer -ensemble state in graphical notation

Ensemble automaton. An ensemble automaton describes
the execution of an ensemble in an abstract mathematical
way. In [1], we have formally defined when an ensemble
automaton conforms to a set of role behavior specifications.
Here, we use ensemble automata as a semantic foundation for
the development of the framework in Chapter III. The states
of an ensemble automaton are ensemble states (as defined
above) and the transitions are labeled either by message labels
or by management labels. However, for the definition of an
ensemble automaton, we must fix a communication style. In
the following, we consider synchronous communication such
that two communication partners must synchronize whenever
they want to execute a shared input/output message. To express
synchronous message exchange, we assume a set msglabels of
message labels of the form msgnm(actparams)(rct , src, trg)
meaning that a message with name msgnm and actual parame-
ters actparams is sent, according to a role connector type rct ,

from a role instance src to a role instance trg . To express man-
agement actions, we assume a set mgmtlabels of management
labels of the form createRole(rt , ci) or giveUp(ri , ci). The
first label indicates that a role instance of type rt is created
and adopted by the component instance ci . The second man-
agement label indicates that a role instance ri is given up by a
component instance ci . In both cases, the adoptedBy function
is updated accordingly. For all kinds of labels, appropriate con-
straints for pre- and/or poststates of transitions are provided.
Preconditions specify applicability of an action, postconditions
specify the effect of the action for an ensemble state; they
are given informally, but can be easily formalized similarly
to the preconditions. Missing preconditions express general
applicability; missing postconditions and underspecified parts
leave room for different implementations.

Definition 4 (Ensemble automaton): Let Σ, CT and
INST be as in Def. 3. A Σ-ensemble automaton (over INST)
is a labeled transition system M = (S , σ0 ,L,T) such that

• S ⊆ StatesΣ,

• σ0 ∈ S is the initial state,

• L = msglabels ∪mgmtlabels ,

• for each (σ1, l, σ2) ∈ T , one of the following holds:
◦ if l = msgnm(actparams)(rct , src, trg) then

(pre) rct ∈ rconnTypes(Σ), (1)

msgnm(params) ∈ msgs(rct), (2)

actparams instantiates params, (3)

src ∈ roleinstssrcType(rct)(σ1), (4)

trg ∈ roleinststrgType(rct)(σ1). (5)

◦ if l = createRole(rt , ci) then
(pre) rt ∈ roleTypes(Σ), ci ∈ INST ct ,

ct ∈ compTypes(rt),

(post) new role instance of type rt is created,
and adopted by ci .

◦ if l = giveUp(ri , ci) then
(post) role instance ri is removed,

and not further adopted by ci .

III. ENSEMBLE IMPLEMENTATION

In this chapter, we present our framework for implementing
ensemble specifications (in Java) that are constructed following
the HELENA modeling method described in Chapter II. The
overall architecture of the framework is shown in Fig. 7. It
contains two layers, the metadata layer and the developer
interface which both are used by a system manager. The meta-
data layer allows us to define component types and ensemble
structures in accordance with the definitions in Sect. II-A.
The developer interface provides the basic functionality to
implement concrete components, indicated by C1,C2,C3, and
concrete ensembles, indicated by E1,E2,E3,E4, by extending
the abstract base classes of the developer interface. It allows
to realize role behaviors described in an ensemble specifica-
tion (cf. Def. 2) and forces implementations to follow the
abstract principles of an ensemble automaton given in Def. 4.
The system manager and its concrete (application dependent)

extension serve for the configuration of particular ensemble
structures and for creating concrete ensembles which can run
concurrently on top of a component-based system. Let us note
that in both layers of the framework, the ensemble related parts
are built upon the component related parts as indicated by the
dependency arrows.

Component

Metadata

Ensemble

Metadata

Component

Developer Interface

Ensemble

Developer Interface

SysManager

ConcSysManager C1 C2 C3 E1 E4E2 E3

m
et
ad
at
a

d
ev
el
o
p
er

in
te
rf
ac
e

Figure 7: Architecture of the HELENA framework

A. Metadata Layer

All concepts used to build up ensemble structures are
realized by corresponding metadata classes and the relation-
ships between concepts are represented by associations in the
metadata layer of the framework. The upper package of Fig. 8
gives an overview of this layer. For instance, to represent
role types rt = (nm, compTypes, roleattrs, rolemsgs) we
use a class RoleType. The name nm is stored in an attribute
name of the class RoleType (not shown in the diagram). It
has the type Class<? extends Role>. This ensures, using the
reflection mechanism of Java, that only those objects of the
class RoleType can be created whose name attribute refers to
a role class extending the abstract class Role of the developer
interface; see below. The set compTypes of component types
which are able to adopt the role type is represented by an
association with end compTypes directed from RoleType to
the class ComponentType. The role type attributes roleattrs
are determined by the association with end roleattrTypes
directed from RoleType to the class AttributeType. Simi-
larly, the set of message types rolemsgsout and rolemsgsin
occurring in rolemsgs are modeled as associations directed
to the class MessageType. Particular role types used in an
ensemble structure are then represented by objects of the class
RoleType. They are constructed with a static factory method
createType(...) with parameters pointing to objects that
represent the single constituent parts of a role type.

An ensemble structure Σ = (roleTypes, rconnTypes) is
represented by an object of the class EnsembleStructure
which has associations with ends roleTypes and rconnTypes
to navigate to the role and role connector types of the ensemble
structure. Similarly, the other concepts are realized in the
metadata layer. In some cases there are structural restrictions
involved in the definitions of Sect. II-A which cannot be
expressed solely by the metadata classes and their associations.
In these cases we use OCL invariants which are checked by
the metadata layer when objects of the metadata classes are
created. For instance, the following invariant expresses the
second condition of Def. 1 which requires that for each role
connector type occurring in an ensemble structure its source
and target types must belong to the role types of the structure.

context EnsembleStructure inv:
self.rconnTypes.allInstances()->forAll{rct|
self.roleTypes->includes(rct.srcType) and
self.roleTypes->includes(rct.trgType)}

Similarly we can express for role connector types
rct = (nm, srcType, trgType,msgs) the condition msgs ⊆
rolemsgsout(srcType) ∩ rolemsgsin(trgType) by an OCL in-
variant for the class RoleConnectorType.

B. Developer Interface

The goal of the developer interface is to facilitate the
implementation of concrete ensemble applications by fol-
lowing the execution model of an ensemble automaton. In
contrast to the metadata classes, we now concentrate on
classes which can be extended such that instances represent
concrete components, ensembles, roles, role connectors and
messages. For this purpose the developer interface offers
abstract classes Component, Ensemble, Role, etc. for each
metadata class, apart from AttributeType.3 An overview of
the developer interface is shown in the second layer of Fig. 8.
Each abstract class has an association to the corresponding
metadata class such that the type of each instance of a concrete
subclass can be determined. To implement a concrete ensemble
application the abstract classes of the developer interface
must be extended by concrete subclasses as indicated by the
inheritance arrows in Fig. 8. The framework ensures, using
Java reflection, that concrete subclasses and the attributes
of concrete component and role classes fit to an ensemble
structure represented by type instances on the metadata level.

The design of the developer framework is guided by the
idea that any running ensemble can be abstractly considered
as an ensemble automaton. Hence the states of a concrete
ensemble should fit to the shape of an ensemble state as
defined in Def. 3 and the execution steps should be relatable
to the transitions of an ensemble automaton; see Def. 4.
Let us first consider Σ-ensemble states which are tuples
σ = (roleinsts, adoptedBy , roledata, control). According to
the developer framework an ensemble is represented by an
instance of the class Ensemble which acts as an ensemble
manager to execute management operations. The set of role
instances roleinsts currently existing in the ensemble is given
by the association with end roleinsts directed from Ensemble
to the class Role. For each role instance, the association
adoptedBy navigates to the unique component instance which
currently adopts this role, represented by the association end
owner. Hence this association delivers us the information
described by the adoptedBy functions. The data state of
each role instance, formalized by the functions in roledata ,
is given by the current values of the instance variables im-
plementing the role attributes of concrete role classes. The
current control state of each role instance, formalized by the
control functions, is implicitly given by the program counter
reporting the progress of the execution of the role instance
behavior. Moreover, an ensemble instance administrates a set
of role connector instances using the association with end
rconninsts from Ensemble to the class RoleConnector. This

3We do not need an abstract class Attribute since attribute instances are
implicitly represented by Java instance variables and their values associated
to component and role instances.

is an extension of the abstract notion of an ensemble state
which is technically needed to establish communication. The
ensemble automata considered here formalize synchronous
communication. This is realized in the framework by the
concrete subclass SynchronousRoleConnector. Other kinds of
communication will be implemented in the future.

For the realization of a role behavior the class
Role prescribes the implementation of its abstract method
roleBehavior(). The class Role extends the class Thread
such that whenever a role instance is created a new thread is
started which executes the roleBehavior() method (usually
concurrently to other role instances). Additionally the role
instance is supplied with an input channel.

According to the definition of ensemble automata, two
types of labels advance the system: message labels msglabels
and management labels mgmtlabels . Message labels are
of the form msgnm(actparams)(rct , src, trg). The mes-
sage part msgnm(actparams) is represented in the frame-
work by an instance of (a subclass of) Message while
message parameters are implemented as attributes. The
connector part (rct , src, trg) is represented by an in-
stance of (a subclass of) RoleConnector which carries
the information of the role connector type rct (stored in
type) as well as the references to the source and target
role instances src and trg stored in src, trg resp.. In
the framework, message exchange is implemented by the
use of the methods send(msg:Message,rc:RoleConnector)
and receive(expectedMsgTypes:ExpectedMsgType[]) of the
class Role. The framework ensures that OCL preconditions,
expressing the preconditions (1) - (5) stated in the ensem-
ble automaton, are respected when a message is sent. Of
course, before sending a message the source role instance must
have created a role connector instance by calling the method
createRoleConnector(rcType:Class,trg:Role) which re-
turns, if admissible, a role connector of type rcType from this
to trg. Hidden from the user, the role connector instance takes
care to transmit the message to the RoleInputChannel of the
target role instance where the target can receive the message.
For synchronous message exchange we use an instance of
SynchronousInputQueue which blocks the sender until the
message is taken from the queue. The receive method has a
parameter expectedMsgTypes determining which messages are
currently expected as input. The framework checks at runtime
whether the input requirements are met.

The management labels createRole(rt , ci) and
giveUp(ri , ci) are implemented by calls to the corresponding
methods in the class Ensemble (parameters are not shown).
The framework ensures that the pre- and/or postconditions
for the corresponding labels in Def. 4 hold, e.g. adopting
a specific role type is allowed for the component. In this
case the createRole method creates a new role instance and
starts its thread as explained above. Both methods can be
called by a role instance on its ensemble manager within the
role behavior implementation. For instance, the behavior of a
router who has detected that it stores the requested file calls
this.ens.createRole(Provider.class,this.owner); and
later on this.ens.giveUp(this,this.owner);. Sometimes,
before creating a role instance, it is first necessary
to find a suitable component instance that can
adopt this role. For this purpose, the method

metadata

MessageType

RoleType RoleConnectorType

EnsembleStructure

AttributeType

developer interface

SynchronousRoleConnector

RoleInputChannel

SynchronousInputQueue

#ensembleID : String

+startEnsemble()
+findSuitableOwner()
+createRole()
+giveUp()

...

Ensemble

RoleConnector

Message

+run()
#roleBehavior()
#createRoleConnector()
#send()
#receive()

RoleComponent

Thread

p2p

RequestAddressConnector

ForwardRequestAddressConnector

SendAddressConnector

ForwardSendAddressConnector

RequestFileConnector

SendFileConnector

-fileName : String

RequestAddressMessage

-address : Role

SendAddressMessage

-fileName : String

RequestFileMessage

-content : char [*]

SendFileMessage

+startEnsemble()
+findSuitableOwner()

FileTransferEnsemble

-address : String
-fileNames : String [*]
-contents : List<char [*]>

...

Peer
-fileName : String

#roleBehavior()

Requester

#roleBehavior()
-hasFile()

Router

#roleBehavior()
-getFile()

Provider

+start()
#configureTypes()
#createComponents()
#startEnsembles()

...

SysManager

#configureTypes()
#createComponents()
#startEnsembles()

PeerSysManager

ComponentType

-msgTypes *
-rolemsgTypesIn

*-rolemsgTypesOut

*

-roleattrTypes

*

-srcType

1
-trgType

1

-compTypes

1..*

-rconnTypes *-roleTypes *

#type 1

#type 1#type 1#type 1

#trg

1

#roleConnectors

*

#src

1

#rconninsts *
#ens 1

adoptedBy#owner

1

#ens 1
#roleinsts *

#type 1

#input 1

«use»

«use»

«use»

-neighbors *

-ensembleStructures

*

-currentEnsembles

*

-currentComponents

*

-componentTypes

*

«use»

-attrTypes *

Figure 8: HELENA framework and application

findSuitableOwner(roleType:Class,caller:Role) of the
class Ensemble can be used which has to be implemented in
a concrete ensemble subclass.

It remains to mention the abstract SysManager class
which provides a template method to start an ensem-
ble system. This method calls sequentially the meth-
ods configureTypes() (to construct ensemble structures),
createComponents() (to create the underlying component
instances) and startEnsembles() to be implemented in the
manager subclass of the framework application.

C. Framework Application

We want to illustrate the use of the framework by im-
plementing the file transfer ensemble introduced in Sec. II-B.
We perform the implementation in two steps concerning the

static aspects and the dynamic behavior. For the static as-
pects, we firstly extend the superclasses of the developer
interface for each type in the example as shown in Fig. 8:
Peer extends Component, Requester, Router, and Provider
extend Role, etc. We define attributes of components and
roles, and parameters of messages, but we do not realize the
role behaviors yet. Then, we extend the abstract superclass
SysManager by the class PeerSysManager and implement the
method configureTypes(). This method instantiates all type
classes of the metadata layer and connects them appropriately
to represent the ensemble structure Σtransfer . We start from
establishing the component types underlying the ensemble-
based system (cf. line 2-4 in Fig. 9). For our example, we
instantiate only one component type for peers (instantiation of
attribute types for the peer type is not shown) and add that to
the list componentTypes of the system manager. Afterwards,

we create instances for all types of the ensemble structure and
connect them accordingly. Line 6-11 exemplify this for the
role type of a requester. Lastly, we compose all types to the
desired ensemble structure and add it to the list of ensemble
structures ensembleStructures for the system (line 14-15).

1 public void configureTypes() {
2 ComponentType peer =
3 ComponentType.createType(Peer.class , ...);
4 th i s.addComponentType(peer);
5

6 Set<ComponentType> reqCompTypes = getAsSet(peer);
7 Set<AttributeType> reqAttrTypes = ...;
8 Set<MessageType> reqMsgsOut = ...;
9 Set<MessageType> reqMsgsIn = ...;

10 RoleType req = RoleType.createType(Requester.class ,
11 reqCompTypes, reqAttrTypes, reqMsgsOut,reqMsgsIn);
12 ...
13

14 th i s.addEnsembleStructure(EnsembleStructure.
15 createType(FileTransferEnsemble.class , ...);
16 }

Figure 9: Instantiation of types in method configureTypes()

The second step is to add dynamic behavior. For
this purpose, we first realize the ensemble specification
by a) implementing the methods roleBehavior() of all
concrete role classes, b) implementing findSuitableOwner()
of class FileTransferEnsemble, and c) implementing
startEnsemble() of class FileTransferEnsemble.
Then, we realize a concrete application by implementing
createComponents() and startEnsembles() of the class
PeerSysManager.

Implementing the method roleBehavior() for each con-
crete role class essentially means deriving an appropriate
branching sequence of message exchanges from the labeled
transition system for the role behaviors shown in Fig. 5.
Each transition labeled with an output message is trans-
lated into a call of the method send() with appropriate
parameters, and for input messages the method receive()
is called respectively. Fig. 10 shows the implementation of
RoleBehRequester depicted in Fig. 5. However, different from
the abstract behavior specification, the implementation needs to
physically connect to the communication partner. For example
for the first output message, the requester has first to get a
reference to a router in the ensemble (line 2-3) and establish
a RequestAddressConnector (line 5-7) before it can actually
send the RequestAddressMessage (line 9). In the implemen-
tation of the method findSuitableOwner() (not shown), the
ensemble manager retrieves the reference to the requested role
by asking one of the neighboring components of the calling
role instance to adopt the role.

The method startEnsemble(Component initComp) of the
class FileTransferEnsemble actually starts an instance of the
ensemble (cf. Fig. 11). The method gets an initial component
as input where the file was initially requested. It creates a
role instance of type Requester adopted by the initial (peer)
component, thus starting to execute the requester’s behavior.
The name of the requested file is set on the role attribute of
the requester in line 3.4

4In fact, the requester waits for this file name before it actually starts its
behavior; the waiting process is not shown in Fig. 10.

1 protected synchronized void roleBehavior() {
2 Role router = th i s.ens.createRole(Router.class ,
3 th i s.ens.findSuitableOwner(Router.class , th i s));
4

5 RequestAddressConnector rac =
6 th i s.createRoleConnector(
7 RequestAddressConnector.class , router);
8

9 th i s.send(new RequestAddressMessage(...), rac);
10

11 SendAddressMessage sndAddr =
12 (SendAddressMessage) th i s.receive(...);
13

14 RequestFileConnector rfc =
15 th i s.createRoleConnector(
16 RequestFileConnector.class , sndAddr.getAddress());
17

18 th i s.send(
19 new RequestFileMessage(this ,
20 th i s.getAttribute("fileName",String.c lass)), rfc);
21

22 SendFileMessage sndFileMsg =
23 (SendFileMessage) th i s.receive(...);
24 }

Figure 10: Implementation of RoleBehRequester

1 public void startEnsemble(Component initComp) {
2 Requester req =
3 th i s.createRole(Requester.class ,initComp);
4 req.setFileName(th i s.requestedFileName);
5 }

Figure 11: Implementation of startEnsemble()

Lastly, a concrete scenario needs to be set up. The
system is populated by concrete peers in the method
createComponents() of the PeerSysManager (cf. Fig. 12).
Each peer is initialized as indicated in line 2-3, the network
of peers as a ring structure is set up (line 5), and each peer
is added to the list currentComponents (line 7). Afterwards,
concrete ensemble instances are created and run in the method
startEnsembles() (cf. 13).

1 public void createComponents() {
2 Peer peer1 = new Peer("p1", "192.121.1.1",
3 fileNames, contents);
4 ...
5 peer1.addNeighbors(peer3, peer2);
6 ...
7 th i s.addComponent(peer1);
8 ...
9 }

Figure 12: Instantiation of peers in createComponents()

1 public void startEnsembles() {
2 Ensemble ens1 =
3 new FileTransferEnsemble("ens1", "song.mp3");
4 th i s.addEnsemble(ens1);
5 ens1.startEnsemble(th i s.getComponent(0));
6

7 Ensemble ens2 = ...
8 }

Figure 13: Implementation of startEnsembles()

Using our framework, the implementation of the case study
was straightforward and could easily be derived from the for-
malization in HELENA. Different file transfer ensembles could
be instantiated (cf. line 7 in Fig. 13) and run concurrently.

IV. CONCLUSION

We have provided a framework for the implementation of
ensemble-based systems. The construction of the framework
was guided by the abstract notions of ensemble specifica-
tions and ensemble automata used for modeling ensembles
in the HELENA approach. HELENA extends component-based
systems by the notion of roles and ensembles to focus on
capabilities of a component needed for particular collabora-
tions. Our framework transfers this concept to object-oriented
programming by providing appropriate classes that can be
extended for particular applications.

The idea to complement object-oriented systems with roles
for evolving objects has already been introduced by Gottlob et
al. [11] and Kristensen et al. [12]. A role provides a particular
perspective on an object and is implemented as an adjunct
instance to an object. However, they do not consider any
dynamic behavior of roles or collaboration between roles to
perform cooperative tasks. Steimann [13], [14] proposes a
formal model for roles and relationships between roles embed-
ding it into the role-oriented modeling language LODWICK.
His “model specifications” are comprised of signature, static
model, and dynamic model similarly to HELENA, but they
do not specify any collaborations or object interactions. He
proposes to indicate by interface realization which (compo-
nent) types can adopt which roles. Hence, roles correspond
to interfaces and do not provide behavior implementations.
To describe structures of interacting objects (i.e. ensemble
structures in HELENA) without having to take the entire system
into consideration, Herrmann [15] introduces “teams” in his
framework ObjectTeams/Java, Baldoni et al. [16] “institutions”
in their framework powerJava, and Reenskaug [17] and Ander-
sen [18] “role models” in their OOram method. Like in HE-
LENA, they define the static architecture of a collaboration by
participating roles, but they handle behavior very differently. In
ObjectTeams/Java and powerJava, collaboration between roles
is initiated through operation calls while in the OOram method,
roles exchange message like in HELENA. In ObjectTeams/Java
and powerJava, roles are not active themselves, but can only
react to operation calls. Reenskaug and Andersen pursue our
idea of roles as being autonomic entities which start their
behavior based on an external stimulus (like a file being
requested from the outside). However, while in HELENA we
model concurrently running ensembles, Andersen proposes
to compose overlapping role models into a single composite
role model. He therefore suggests state spaces to efficiently
represent composite behaviors while we explicitly want to run
behaviors in parallel.

Our framework implementing the HELENA approach can
be considered as a first prototype which will be extended
in several directions: a) We will implement further connec-
tor types to support further communication styles like asyn-
chronous communication and multicasting. b) The framework
will be based on a component infrastructure supporting dis-
tributed deployment of components. c) A tool for the semi-
automatic generation of role behavior implementations from

role behavior specifications will be constructed. Moreover, the
whole HELENA approach will be further developed to inte-
grate goal specifications, awareness of changing environments,
adaptability requirements and interaction specifications on a
global level, like in multi-party session types [19]. We also
want to investigate proof methods for checking properties on
the level of ensemble specifications which should be preserved
by implementations.

ACKNOWLEDGMENT

This work has been partially sponsored by the EU project
ASCENS, 257414.

REFERENCES

[1] R. Hennicker and A. Klarl, “Foundations for Ensemble Modeling -
The Helena Approach,” in Specification, Algebra, and Software: A
Festschrift Symposium in Honor of Kokichi Futatsugi (SAS 2014).
LNCS, to appear 2014, preliminary version available at http://www.
pst.ifi.lmu.de/Personen/team/klarl/papers/sas2014.pdf.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[3] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, Jul. 1999.

[4] “The ASCENS Project.” [Online]. Available: http://www.ascens-ist.eu
[5] M. Wirsing, M. Hölzl, M. Tribastone, and F. Zambonelli, “ASCENS:

Engineering Autonomic Service-Component Ensembles,” in Formal
Methods for Components and Objects, 10th International Symposium,
FMCO 2011, ser. LNCS. Springer.

[6] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[7] D. Abeywickrama, N. Bicocchi, and F. Zambonelli, “SOTA: Towards a
General Model for Self-Adaptive Systems,” in 21st IEEE International
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises. Toulouse: IEEE CS Press, 2012, pp. 48–53.

[8] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[9] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., The Com-
mon Component Modeling Example: Comparing Software Component
Models, ser. LNCS, vol. 5153. Springer, 2008.

[10] “The Helena Framework.” [Online]. Available: http://www.pst.ifi.lmu.
de/Personen/team/klarl/helena

[11] G. Gottlob, M. Schrefl, and B. Röck, “Extending Object-Oriented
Systems with Roles,” ACM Trans. Inf. Syst., vol. 14, no. 3, pp. 268–296,
1996.

[12] B. B. Kristensen and K. Østerbye, “Roles: Conceptual Abstraction
Theory and Practical Language Issues,” TAPOS, vol. 2, no. 3, pp. 143–
160, 1996.

[13] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,” Data Knowl. Eng., vol. 35, no. 1, pp. 83–106,
2000.

[14] ——, “ Formale Modellierung mit Rollen,” Habilitation Thesis, Uni-
versität Hannover, 2000.

[15] S. Herrmann, “Object teams: Improving modularity for crosscutting
collaborations,” in Revised Papers from the International Conference
NetObjectDays on Objects, Components, Architectures, Services, and
Applications for a Networked World, ser. NODe ’02. London, UK,
UK: Springer-Verlag, 2003, pp. 248–264.

[16] M. Baldoni, U. Studi, and T. Italy, “Interaction between Objects in
powerJava,” Journal of Object Technology, vol. 6, pp. 7–12, 2007.

[17] T. Reenskaug, Working with objects: the OOram Framework Design
Principles. Manning Publications, Greenwich, CT, 1996.

[18] E. P. Andersen, “ Conceptual Modeling of Objects – A Role Modeling
Approach,” Ph.D. dissertation, University of Oslo, 1997.

[19] M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida,
“Inference of global progress properties for dynamically interleaved
multiparty sessions,” in COORDINATION, 2013, pp. 45–59.

