
From Helena Ensemble Speci�cations to

Executable Code

Annabelle Klarl, Lucia Cichella, and Rolf Hennicker

Ludwig-Maximilians-Universität München, Germany??

Abstract. The Helena approach [5] provides a modeling technique for
distributed systems where components dynamically collaborate in en-
sembles. Models of such systems are formalized with ensemble speci�ca-
tions. They can be implemented using the jHelena framework [6]. In this
paper, we present a domain-speci�c language for ensemble speci�cations
and provide an Eclipse plug-in featuring an editor and an automatic code
generator for translating ensemble speci�cations into executable code.

1 Motivation

Exploiting global interconnectedness in distributed systems, autonomic com-
ponents can dynamically form ensembles to collaborate for some global goal.
The EU project ASCENS [1,9] develops foundations, techniques and tools to
support the whole life cycle for the construction of Autonomic Service Com-
ponent ENSembles. In this context, several approaches to formalize and im-
plement ensemble-based systems have been developed. SCEL [3,4] provides a
kernel language for abstract programming of autonomic systems, whose com-
ponents rely on knowledge repositories, and models interaction by knowledge
exchange. In SCEL (and its implementation jRESP) ensembles are understood
as group communications. DEECo [2] introduces an explicit speci�cation artifact
for ensembles dynamically formed according to a given membership predicate.
Interaction is realized by implicit knowledge exchange managed by DECCo's
runtime infrastructure. Related approaches have been developed in the context
of multi-agent systems and multi-party session types, for instance in the Scrib-
ble framework [10]. Recently, we proposed the Helena approach [5] which is
centered around the notion of roles. Roles can be adopted by components to col-
laborate in ensembles. The introduction of roles helps (1) to focus on the partic-
ular tasks which components ful�ll in speci�c collaborations and (2) to structure
the implementation of ensemble-based systems. In the jHelena framework [6],
roles are implemented as Java threads on top of a component. Role objects are
bound to speci�c ensembles while components can adopt many roles in di�erent,
concurrently running ensembles. So far, there is no tool support for writing en-
semble speci�cations and their implementation in jHelena must be derived by
hand. In this paper, we present HelenaText, a domain-speci�c language for
ensemble speci�cations, and provide an Eclipse plug-in for writing speci�cations
and generating code following the strategy proposed in [6].

?? This work has been partially sponsored by the EU project ASCENS, 257414.



2 Helena in a Nutshell

Helena is based on a rigorous typing discipline, distinguishing between types
and instances. Component instances classi�ed by component types are considered
as carriers of basic information relevant across many ensembles. Whenever a
component instance joins an ensemble, the component adopts a role by creating
a new role instance and assigning it to itself. The kind of roles a component
is allowed to adopt is determined by role types. Given a set CT of component
types, a role type rt over CT is a tuple rt = (nm, compTypes, roleattrs, rolemsgs)
such that nm is the name of the role type, compTypes ⊆ CT is a �nite, non-
empty subset of component types (whose instances can adopt the role), roleattrs
is a set of role speci�c attribute types for role-speci�c information, and rolemsgs
is a set of message types capturing incoming, outgoing, and internal messages
supported by the role type rt . We want to illustrate the use of Helena at a peer-
2-peer network supporting the distributed storage of �les which can be retrieved
upon request. Several peers work together to request and transfer a �le: One
peer plays the role of the Requester of the �le, other peers act as Routers and
the peer storing the requested �le adopts the role of the Provider. All these
roles can be adopted by components of the type Peer. Fig. 1a shows the role
type Router in graphical representation similar to a UML class. The notation
Router:{Peer} indicates that any component instance of type Peer can adopt the
role Router. The Router has no role-speci�c attributes and supports one incoming
and two outgoing messages types. The full speci�cation and implementation of
the example can be found in [5,6].

A Helena ensemble speci�cation EnsSpec = (Σ,RoleBeh ) consists of two
parts, an ensemble structure Σ and a family RoleBeh of role behavior speci-

�cations RoleBehrt (one for each role type rt occurring in Σ). The ensemble
structure Σ = (roleTypes, rconnTypes) speci�es a set roleTypes of pairs, consist-
ing of a role type and an associated multiplicity. Each multiplicity (like 0..1, 1,
∗, 1..∗ etc.) determines how many instances of that role type may contribute to
the ensemble. The set rconnTypes of role connector types speci�es which types
of messages can be exchanged between role instances. Each role connector type
must be equipped with a source and a target role type which must be declared in
roleTypes. Fig. 1b shows a graphical representation of the ensemble structure for
the p2p example. It consists of three role types (Requester, Router, Provider)
with associated multiplicities and �ve role connector types. For instance, the con-
nector type ReqAddrConn consists of the single message type reqAddr(Requester

req)(String fn) with source type Requester and with target type Router. It
will be used for requesting the address of a provider for �le fn such that the �le
can be directly downloaded afterwards using the connectors between Requester

and Provider.
A role behavior speci�cation RoleBehrt for a role type rt speci�es the life cycle

of each instance of rt . We represent role behaviors by labeled transition systems
derived from process expressions [8]. The labels denote actions which must �t
to the declared ensemble structure. There are actions for creating role instances,
sending (!) or receiving (?) messages, and performing internal computations. For

2



instance, Fig. 1c shows the behavior speci�cation of a Router. Initially, a router is
able to receive a request for an address either via the role connector ReqAddrConn
(from the requester) or via FwdReqAddrConn (from another router). Depending on
whether the router knows the peer storing fn or not, it either creates a provider
role instance prov and sends it back to the requester (right branch) or it forwards
the request to another router (left branch). The formal ensemble speci�cation
serves as an analysis model, e.g. to eliminate collaboration mismatches between
di�erent roles at early stages, and as a design model for implementation.

«role type»
Router:{Peer}

in reqAddr(Requester req)(String fn)
out reqAddr(Requester req)(String fn)
out sndAddr(Provider prov)()

(a) Role type for a Router

Requester 1

Router 1..∗

Provider 0..1

ReqA
ddrC

onn

SndA
ddrC

onn

ReqFileConnSndFileConn

FwdReqAddrConn

(b) Ensemble structure for �le retrieval

r0 r1

r2

r3

r4

r5

r6

r7

ReqAddrConn?reqAddr(Requester req)(String fn)

FwdReqAddrConn?reqAddr(Requester req)(String fn)

router ← create(Router)

frac ← createRC(FwdReqAddrConn,router)

frac!reqAddr(req)(fn)

prov ← create(Provider)

sac ← createRC(SndAddrConn,req)

sac!sndAddr(prov)()

(c) Role behavior for a Router

Fig. 1: Ensemble speci�cation in graphical notation (excerpt)

For the implementation and execution of ensembles, we provide the Java
framework jHelena [6]. The framework contains two layers and a system man-
ager; cf. upper part of Fig. 2. The metadata layer implements the types used
in ensemble structures, i.e. component types, role types, etc. All types and en-
semble structures themselves are represented by objects of the metadata classes
which are linked according to the formal de�nitions. While the metadata layer
is related to the type level, the developer interface is related to the instance
level. It contains abstract base classes which must be extended to implement
subclasses for particular components, roles etc. The SysManager class provides
basic functionality for the administration of ensembles. Its abstract operations
must be implemented by a concrete system manager for con�guring particular
ensemble structures and the necessary types, creating the underlying component
instances and instantiating and starting an ensemble. The framework controls
that the created ensembles are built in accordance with previously con�gured
ensemble structures.

3



Fig. 2: jHelena framework and generated p2p ensemble application (excerpts)

3 HelenaText and Code Generation

When modeling and implementing an ensemble-based system according to He-
lena, the developer may experience two pitfalls. Without any editor support,
the developer has to ensure herself that her speci�cations conform to Helena
and respect all constraints formulated in the formal de�nitions. To implement
an ensemble, she has to translate an ensemble speci�cation to jHelena code
by hand and has no guarantee that the implementation indeed respects the for-
mal speci�cation. We therefore de�ne HelenaText, a domain-speci�c language
(DSL) which provides a concrete syntax for ensemble speci�cations supporting
roles and ensemble structures as �rst-class citizens. We also provide Eclipse inte-
gration which features a full HelenaText editor including syntax highlighting,
content assist, and validation. Moreover, we de�ne a set of rules for the automatic
generation of jHelena code from HelenaText.

4



HelenaText. For de�ning the syntax of HelenaText we use Xtext
(www.eclipse.org/Xtext/), a framework for the development of DSLs fully
integrated into Eclipse. We de�ne a grammar in a BNF-like notation following
the formal de�nitions of types, ensemble structures and role behaviors. Con-
straints which cannot be included into the DSL grammar are formulated as
validation rules written with Xtend. For instance, List. 1.1 shows the gram-
mar for the declaration of ensemble structures which must start with the key
word ensembleStructure followed by its name. In curly braces the two parts
(roleTypes, rconnTypes) of an ensemble structure Σ (cf. Sec. 2) are speci�ed:
roleTypes is a list of role types with multiplicity, rconnTypes is a list of role
connector types (their speci�cations including source and target types are not
shown). However, in the DSL grammar we cannot express the constraint that
each role connector type must be equipped with a source and a target role type
de�ned in roleTypes. For that, a validation rule in Xtend is added (cf. List. 1.2)
which iterates over all role connector types in the ensemble structure and reports
an error if the context condition is not satis�ed. The concrete syntax for the dec-
laration of the ensemble structure of Fig. 1b is shown in List. 1.3. The concrete
syntax for role behaviors is a textual representation of labeled transition systems
not shown here. The rules for all syntactic constructs of HelenaText can be
found at [7].

1 EnsembleStructure:
2 ’ensembleStructure’ name=ValidID ’{’
3 ’roleTypes’ ’=’ ’{’
4 roleTypes+=RoleTypeWithMultiplicity (’,’roleTypes+=RoleTypeWithMultiplicity)*’}’’;’
5 ’rconnTypes’ ’=’ ’{’
6 rconnTypes+=[RoleConnectorType] (’,’rconnTypes+=[RoleConnectorType])*’}’’;’
7 ’}’;

Listing 1.1: HelenaText grammar rule for ensemble structures

1 @Check
2 def check_es_rtsContainRcSrcAndTrgRoles(EnsembleStructure es) {
3 var rts = es.roleTypes.getRoleTypeList;
4 for (RoleConnectorType rct : es.rconnTypes) {
5 if (!(rts.contains(rct.srcType) && rts.contains(rct.trgType))) {
6 error(’srcType and trgType of roleConnectorType not listed in roleTypes’,...)
7 }}}

Listing 1.2: Validation rule for ensemble structures

1 ensembleStructure TransferEnsemble {
2 roleTypes = {<Requester,1>,<Router,1..*>,<Provider,0..1>};
3 rconnTypes = {ReqAddrConn,SndAddrConn,FwdReqAddrConn,ReqFileConn,SndFileConn};
4 }

Listing 1.3: Ensemble structure for �le retrieval in HelenaText

Code generation. The code generator takes a HelenaText �le containing
a particular ensemble speci�cation and generates a package for the ensemble ap-
plication which is split into two parts, the (sub)packages src-gen and src-user;
see Fig. 2. The package src-gen is already complete and must not be touched
by the user. It contains a subclass (here P2PSysManager) of the SysManager class

5

www.eclipse.org/Xtext/


which implements the method configureTypes(). The method body creates ob-
jects for the metadata classes to represent types and the ensemble structure
in accordance with the speci�cation. Moreover, src-gen contains subclasses for
the abstract base classes of the developer interface. These subclasses, like Peer,
Router, correspond to the types of the given ensemble structure.

To de�ne templates for the code generation, we use Xpand. List. 1.4 shows
an excerpt of such an Xpand rule. The operation body is called for any role type
given in a HelenaText speci�cation and generates the corresponding class
declaration in jHelena. Basically anything in the operation body is written to
the generated class �le except text enclosed in tag brackets �� which must be
evaluated �rst. For example, in line 3 the class-header is built. The name of
the class is dynamically evaluated from the expression �classname�. This is a
function of RoleType which is called for the �rst parameter it of the operation
(see line 1) and retrieves the name of the role type it (the resulting class-header
for the role type Router is shown in line 1 of List. 1.5). Afterwards, in line 4-6 of
the Xpand rule all attributes of the role type are generated (which are none for
the role type Router). Lines 8-18 declare additional attributes for any created
instances or parameters of incoming messages in the role behavior of the role
type such that their values can be accessed throughout the execution of the role
behavior. For example, for the role behavior of the Router in Fig. 1c we need
attributes to store the values of the two created role instances router and prov,
of the role connector instances frac and sac as well as of the parameters req

and fn of the incoming message reqAddr. For the role behavior itself the method
step is generated from the textual labeled transition system representation in
HelenaText (see line 22, template not shown here). Basically, a simple state
machine is implemented which will be called repeatedly by the run method
implemented in the base class Role of the developer interface in jHelena.

1 def body(RoleType it, ImportManager im)
2 ’’’
3 public abstract class «it.classname» extends Role {
4 «FOR a:it.roleattrs»
5 «attrTypeGenerator.compile(a,im)»
6 «ENDFOR»
7

8 «IF it.roleBehavior != null»
9 «var instsAndParams = it.roleBehavior.getInstancesAndBindingParams(null, null)»

10 «FOR instOrParam : instsAndParams»
11 «IF(instOrParam instanceof AbstractInstance)»
12 «var inst = instOrParam as AbstractInstance»
13 «attrVisibility» «inst.type.name» «inst.name» = null;
14 «ELSEIF (instOrParam instanceof AbstractParam)»
15 ...
16 «ENDIF»
17 «ENDFOR»
18 «ENDIF»
19

20 public «it.classname»(Ensemble ens){ ... }
21

22 protected synchronized void step() throws ... { ... }
23 }’’’

Listing 1.4: Generation rule for role types (excerpt)

6



1 public abstract class Router extends Role {
2 protected Router router = null;
3 protected FwdReqAddrConn frac = null;
4 protected Provider prov = null;
5 protected SndAddrConn sac = null;
6 protected Requester req = null;
7 protected String fn = null;
8

9 public Router(Ensemble ens) { ... }
10

11 protected synchronized void step() throws ... {
12 if (this.currentState == RouterState.r0) {
13 ReqAddrMessage reqAddr = (ReqAddrMessage) this.receive(
14 new ExpectedMsgTypes(ReqAddrConn.class, ReqAddrMessage.class),
15 new ExpectedMsgTypes(FwdReqAddrConn.class, ReqAddrMessage.class));
16 this.currentState = RouterState.r1;
17 }
18 else if (this.currentState == RouterState.r1) {
19 if (check_r1_0()) {
20 this.router = this.ens.createRole(RouterImpl.class, this.getOwnerForRouter());
21 this.currentState = RouterState.r2;
22 }
23 else if (check_r1_1()) {
24 this.prov = this.ens.createRole(ProviderImpl.class, this.getOwnerForProv());
25 this.currentState = RouterState.r5;
26 ...

Listing 1.5: Generated jHelena code for a Router (excerpt)

Lines 11-26 in List. 1.5 show an excerpt of the step method generated from
the behavior speci�cation of Router shown graphically in Fig. 1c. The code
generator creates a sequence of case distinctions to determine the next action
depending on the current state. If there is only one transition starting from the
current state, the action can directly be translated from HelenaText to code.
If there are several alternatives for one state, like for r0 or r1 in Fig. 1c, the non-
determinism between those branches has to be resolved. In Helena there are no
mixed states in a role behavior meaning that whenever an incoming message is
an alternative in a certain state then the other alternatives must also be incom-
ing messages. Nondeterminism for incoming messages can be resolved easily by
waiting for several messages in parallel; cf. line 13-15 in List. 1.5. For all other
actions, the code generator cannot decide which transition to take. Therefore,
for each such branch an abstract boolean method is called, cf. line 19 and 23,
which must be implemented by the user to decide which branch should be taken.
This mechanism is also used for the creation of new role instances. In fact, the
user has to decide on which component the role instance should be deployed;
cf. call to the abstract method getOwnerForRouter() in line 20. To implement
user decisions, the code generator constructs the package src-user which in-
cludes implementation classes for all abstract classes in src-gen. The package
src-user also contains a concrete manager class (here P2pSysManagerImpl). The
user has to implement the methods createComponents() and startEnsembles()

for creating components and for creating and starting ensembles, which can run
concurrently. We have only described here the basic ideas behind the code gen-
eration. Formally it is based on a set of generation rules written in Xpand and
Xtend which de�ne, for each model element in HelenaText, how it is trans-

7



lated to jHelena code. The rules for all syntactic constructs of HelenaText
can be found at [7].

Next steps. In the near future we intend to provide a graphical DSL in addi-
tion to HelenaText which implements our UML-like notation used throughout
the paper. Moreover, we want to investigate collaboration requirements and in-
tegrate tools for the analysis of ensemble speci�cations to check the absence of
collaboration errors.

References

1. The ASCENS Project (2014), http://www.ascens-ist.eu
2. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:

DEECo: an Ensemble-based Component System. In: Proceedings of 16th Interna-
tional Symposium on Component-Based Software Engineering. pp. 81�90. ACM
(2013)

3. De Nicola, R., Ferrari, G.L., Loreti, M., Pugliese, R.: A Language-Based Approach
to Autonomic Computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) 10th International Symposium on Formal Methods for Components
and Objects. Lecture Notes in Computer Science, vol. 7542, pp. 25�48. Springer
(2011)

4. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: SCEL: a Language for Autonomic
Computing. Tech. rep., IMT, Institute for Advanced Studies Lucca, Italy (2013)

5. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling - The Helena Ap-
proach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Speci�cation, Algebra, and
Software. Lecture Notes in Computer Science, vol. 8373, pp. 359�381. Springer
(2014)

6. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving
Ensembles with the Helena Framework. In: Proceedings of the 23rd Australasian
Software Engineering Conference. pp. 15�24. IEEE (2014)

7. Klarl, A., Hennicker, R.: The Helena Framework (2014), http://www.pst.ifi.
lmu.de/Personen/team/klarl/helena

8. Klarl, A., Mayer, P., Hennicker, R.: Helena@Work: Modeling the Science Cloud
Platform. In: International Symposium On Leveraging Applications of Formal
Methods, Veri�cation and Validation. Springer (to appear 2014)

9. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Au-
tonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., Bonsangue,
M., de Boer, F. (eds.) 10th International Symposium on Formal Methods for Com-
ponents and Objects. Lecture Notes in Computer Science, vol. 7542. Springer
(2012)

10. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble Protocol Language. In:
Abadi, M., Lafuente, A.L. (eds.) 8th International Symposium Trustworthy Global
Computing. Lecture Notes in Computer Science, vol. 8358, pp. 22�41. Springer
(2013)

8

http://www.ascens-ist.eu
http://www.pst.ifi.lmu.de/Personen/team/klarl/helena
http://www.pst.ifi.lmu.de/Personen/team/klarl/helena

	From Helena Ensemble Specifications to Executable Code

