
Engineering Self-Adaptive Systems
with the Role-Based Architecture of HELENA

Annabelle Klarl
Ludwig-Maximilians-Universität München, Germany

Abstract—When engineering self-adaptive systems, separating
adaptation and application logic was proven beneficial to avoid
interdependencies between adaptation strategy and standard
behavior. Several engineering methods support this separation in
different phases of the classical development process, but none
addresses it consistently in all of them. We propose a holistic
model-driven engineering process with systematic transitions
between all phases to develop self-adaptive systems. Adaptation
is achieved by changing the behavioral mode of a component in
response to perceptions. We realize behavioral modes by roles
which a component can dynamically adopt. For specification, we
propose adaptation automata which allow to specify complex
adaptation behavior by hierarchical structure and history of
states. Furthermore, we propose the HELENA Adaptation Man-
ager pattern to derive a role-based model from a specification.
Due to its formal foundation, the model can be analyzed with
Spin and executed with the Java framework jHELENA.

I. INTRODUCTION

To cope with changing conditions at run-time, the concept of
self-adaptation has been proposed. A self-adaptive component
keeps track of its individual and shared goals, perceives its
internal state as well as its environment, and adapts its behav-
ior accordingly [1], [2]. We say, a self-adaptive component
changes its behavioral mode in response to perceptions.

Engineering self-adaptive systems (state of the art): It
is commonly agreed that adaptation logic of self-adaptive
systems (SAS) should be developed independently from ap-
plication logic [1], [3], [4]. Thus, the application logic of
behavioral modes is developed without considering changes in
the environment. Conversely, adaptation logic is designed to
switch between behavioral modes without taking care how the
modes perform their task. In the literature of SAS, this separa-
tion of concerns is addressed at different development phases:
Automata-based approaches [5]–[8] offer formal specification
and verification techniques. Architectural patterns [9] intro-
duce design guidelines for realization. Role models [10], [11]
propose concepts for switching between behavioral modes.
Architecture-based self-adaptation [12]–[14] is presented as a
framework for designing and implementing SAS.

Consequences: None of the existing approaches provides a
holistic development process considering adaptation logic in-
dependently from application logic in all main phases and sup-
porting systematic transitions between all of them. Therefore,
artifacts cannot be easily traced through the whole process and
we cannot guarantee correct realization of requirements since
we lack systematic transitions between each of the phases.

This work was partially sponsored by the EU project ASCENS, 257414.

Contributions: Integrating and extending existing ap-
proaches, we propose a holistic model-driven engineering pro-
cess to develop self-adaptive systems. (1) For specification, we
propose hierarchical adaptation automata. They offer history
states and hierarchical composition of states as expressive
tools to specify complex adaptation behavior. Furthermore,
they provide placeholders to plug application logic in. (2) For
the design, we propose a role-based architecture following
the HELENA Adaptation Manager (HAM) pattern. Roles intu-
itively express the different tasks of self-adaptive components,
like being aware of the environment, managing adaptation,
and performing particular behavioral modes. (3) We propose
a systematic transition (which can be fully automated) from
specification to role-based design. Especially, representing an
adaptation automaton as a standard labeled transition automa-
ton is particularly involved since hierarchical structure and
history states have to be resolved. (4) By realizing the role-
based design with the modeling approach HELENA [15], we
benefit from its implementation and verification tools through
reusing its automatic transformations to Java [16], [17] and
Promela [18]. (5) Thus, we introduce the missing traceability
of artifacts throughout the whole engineering process while
keeping adaptation logic and application logic separated.

Outline: The HELENA development process is shown in
Fig. 1. In this paper, we focus on the first two phases and
illustrate them with a search-and-rescue scenario (cf. Sec. II)

(1) Adaptation specification (Sec. III): The self-adaptive
components which contribute to the system are specified by
their signature – capturing attributes and behavioral modes of
the component – and an adaptation automaton – describing
when the component switches between behavioral modes.

(2) Design pattern (Sec. IV): We propose the HAM pattern
to create a role-based model for self-adaptive components. We
exploit the concept of roles to encapsulate modes and their
behaviors. A component’s behavior is adapted by changing the
currently active role of the component. An adaptation manager,
also represented by a role, takes care to switch between mode
roles according to the adaptation automaton.

(3) Model transformation part 1 (Sec. V): We system-
atically derive a role-based architecture following the HAM
pattern for the initially specified self-adaptive component.

(4) Specification of application logic: After the first trans-
formation, we rely on the role-based architecture to specify the
application logic of behavioral modes as mode role behaviors.

(5) Model transformation part 2 (Sec. VI): We integrate
the mode role behaviors and the adaptation automaton into the

Implementation

Verification

 DesignSpecification

Role-Based Adaptation
Specification

Adaptation
Specification

Signature

 Adaptation Automaton

HAM Pattern

Full
HELENA

Design Model

jHELENA

Implementation

Promela Veri-
fication Model

 Verification

 Execution
Code

Generation

Model
Transformation

Model
Transformation

Part 1

Model
Transformation

Part 2

Role-Based Architecture

Adaptation Automaton

Mode Role Behaviors

HAM Pattern1
2

3

4

5

6

7

2

Fig. 1. The HELENA development process for self-adaptive systems. Rectangular boxes denote artifacts, boxes with rounded edges are activities. The boxes
marked with a user icon are artifacts which have to be created by the specifier; all other artifacts can be systematically derived by the shown activities.

role-based architecture to gain a full HELENA design model.
(6) Implementation: The execution framework

jHELENA [16] transfers the concept of roles to Java.
We rely on this framework to implement and execute our
HELENA model. An automatic code generator from HELENA
specifications to jHELENA code was already presented in [17].

(7) Verification: Additionally, HELENA models can be
formally analyzed. In [18], we introduced model-checking to
HELENA by systematically transforming HELENA models to
Promela to be able to verify temporal properties using Spin.

II. SEARCH-AND-RESCUE SCENARIO

One of the case studies of the EU-project ASCENS (www.
ascens-ist.eu) is a robotic search-and-rescue scenario [19].
Robots are distributed over an unknown area where recently
a disaster happened. The robots have to find victims and to
transport them to a rescue area. Since humans should not enter
the dangerous area, the robots have to self-adaptively manage
their behaviors. For example, during searching for victims,
a robot searches randomly and informs other robots about
the location of found victims. If it was informed about the
victim’s location by another robot, it switches to a directed
walk towards the victim. A robot also changes its behavior
whenever it reaches a victim during search and starts to help
rescuing the victim. Orthogonally, the robot may run out of
battery at any time. Then, the robot switches to a low-power
behavior and waits for another robot to get recharged.

III. ADAPTATION SPECIFICATION

The first step in the development process in Fig. 1 is the
adaptation specification. A self-adaptive system is composed
of a set of self-adaptive components given by their signature
and adaptation automaton. The automaton describes the rules
how a component changes its current behavioral mode de-
pending on perceptions. Formally, an adaptation specification
is a pair AdapSpec = (sigs, auts) such that sigs is a set of
signatures of self-adaptive component types and auts is a set of
adaptation automata. For every self-adaptive component type
ct ∈ sigs, exactly one automaton AAct ∈ auts must exist.

A. Signature of Self-Adaptive Component Types

The signature ct = (nm, attrs, attrsaware ,modes) of a self-
adaptive component type describes the static properties of
the component. It has a name nm and stores normal data
(attributes of the set attrs). Additionally, it stores perceptions
about the environment and its own state as awareness data
(attributes of the set attrsaware). While component data may

also be perceptions, it does not directly trigger adaptation.
However, it may transitively influence awareness data which
is then the ultimate source to decide whether to adapt. The set
modes is a set of behavioral modes which the component can
switch in response to changes of awareness data.

Example: In our search-and-rescue scenario, we just need
one self-adaptive component type. Its signature is shown in
Fig. 2 in graphical notation. The type Robot stores its own
position, is aware of its battery level and whether it is at a
victim’s position (the position is not awareness data; although
it is perceived, it does only transitively trigger self-adaptation
when reaching a victim). It is aware of the environment by
storing the position of a victim (null if unknown), and whether
it was requested as recharger by another robot. A robot has
five behavioral modes as in explained in Sec. II: RandomWalk,
DirectedWalk, Rescue, LowBattery, and Recharge.

«self-adaptive
component type»

Robot

«component data»
ownPos

«awareness data»
battery
atVictim
victimPos
rechargeRequested

«behavioral modes»
RandomWalk
DirectedWalk
Rescue
LowBattery
Recharge

Fig. 2. Signature and adaptation automaton of a robot

B. Adaptation Automata

To describe the rules for switching behavioral modes, we
propose hierarchical labeled transition systems which extend
standard labeled transition systems by hierarchy and history.

Auxiliary definitions: A set Q of states over Qbasic con-
sists of all basic states q ∈ Qbasic and all complex states
q = (cset , init) such that cset ⊆ Q is a finite, non-empty set of
states and init ∈ cset is the initial state of the set. We denote
the set of all basic states transitively included in a state q by
basic-states(q) and the set of all sub-states (of any depth) by
sub-states∗(q). A state q is well-formed if it is a basic state
q ∈ Qbasic or it is a complex state q = (cset , init) such that all
q′∈cset are well-formed and all sets basic-states(q′) are disjoint.

H-LTS: A hierarchical labeled transition system (H-LTS)
over a set Qbasic of basic states is a tuple (q ,L, δ, δ∗) with
• a state q from the set of (well-formed) states over Qbasic ,
• a set L of labels,
• transition relations δ, δ∗⊆sub-states∗(q)×L×sub-states∗(q).

www.ascens-ist.eu
www.ascens-ist.eu

The H-LTS is composed of only one state from the states
over Qbasic , the core state. Labeled transitions connect two
sub-states (of any depth) of this state. Semantically, an H-LTS
is represented by a standard LTS. Transitions in δ originating
from a complex state are an abbreviation for adding a transition
with the same target to every basic sub-state of the origin.
Transitions in δ leading to a complex state actually target the
initial state of the complex state. A separate set δ∗ of history
transitions reflects the idea of deep history states in UML state
charts. A history transition leading to a complex state q means
returning to the last visited basic state q′ ∈ basic-states(q).

Adaptation automata: An adaptation automaton for a self-
adaptive component type is a special instance of an H-LTS.
The basic states range over all different behavioral modes of
the component type. Transitions between states are initiated
by predicates over awareness data of the component type.

Example: Fig. 2 shows the adaptation automaton of a
robot in a graphical notation similar to UML state charts. We
just highlight complex states and history transitions. The two
search strategies RandomWalk and DirectedWalk are integrated
into one complex state Search. Thus, we can express that
independently from the search strategy, the robot switches to
rescuing as soon as it is at a victim’s position (transition from
Search to Rescue). Similarly, the robot interrupts its current
behavior if it goes out of battery (transition from FullBattery

to LowBattery). However, it resumes the previously executed
behavior upon recharge expressed by the history transition
from LowBattery back to the history state of FullBattery.

C. Benefits

Conceptually, the adaptation specification realizes the idea
of separation of concerns. The transitions of an adaptation
automaton are triggered by changes of awareness data and
thus capture adaptation logic only. The states of the automaton
are the behavioral modes of a component and serve as place-
holders where concrete application logic can be plugged in.

Methodologically, hierarchical states allow subsuming tran-
sitions with the same trigger from all sub-states of a complex
state into one single transition. History transitions represent
returning to the last visited sub-state of a complex state
and therefore prevent unfolding the adaptation automaton for
every possible last visited sub-state. Thus, adaptation rules are
specified more compactly than in a standard LTS.

IV. ROLE-BASED ADAPTATION DESIGN PATTERN

In the development process in Fig. 1, we rely on the HAM
pattern to derive a HELENA design model from an adaptation
specification. It is a design pattern which proposes to realize
SAS with a role-based architecture based on HELENA [15]
according to the autonomic manager pattern [9].
A. Autonomic Manager Pattern

In the autonomic manager pattern (cf. Fig. 3a), an adaptable
component is managed by an adaptation manager. The man-
ager monitors the environment and the component itself, ana-
lyzes and plans appropriate reactions, and executes adaptations
on the managed component (cf. MAPE-K loop [4]). Thereby,

the component takes perceptions about the environment with
its sensor. It forwards these perceptions together with obser-
vations about its own state via its emitter to the manager.
Therefore, the adaptation manager observes the state of the
component and transitively of the environment via its sensor.
Depending on these perceptions, it internally decides about
appropriate reactions and imposes them via its effector on the
component. The component realizes the instructed adaptations
affecting the environment through its effector.

However, the pattern lacks a concept how the component
actually changes its behavior. We think that roles which
can be played by components are an intuitive representation
of context-specific behavior and can therefore provide the
necessary concept for switching between behavioral modes.

B. HELENA in a Nutshell

The role-based modeling approach HELENA [15] provides
concepts to describe systems where components play certain
roles in ensembles to perform global goal-oriented tasks. A
role encapsulates context-specific capabilities and behavior. By
switching between roles, the component changes its currently
executed behavior. By adopting several roles in parallel, it
concurrently executes different behaviors.

Ensemble structures: The foundation for ensemble-based
systems are components characterized by their type. They
have a name and a set of attributes representing basic in-
formation that is useful in all roles the components can
adopt. They also provide a set of operations which can be
invoked by their roles. Roles are classified by role types.
Given a set CT of component types, a role type rt is a tuple
(nm, compTypes, roleattrs, rolemsgs): nm is the name of the
role type; the set compTypes ⊆ CT determines the component
types which can adopt the role; the set roleattrs allows to
store data that is only relevant for performing the role; the
set rolemsgs determines the incoming and outgoing messages
supported by the role. To define the structural characteristics of
collaborations, an ensemble structure specifies the role types
whose instances form the ensemble and determines how many
instances of each role type may contribute to the ensemble by a
multiplicity (like 0..1, 1, ∗, 1..∗ etc.) for each type. We assume
that between two role types the messages which are output on
one side and input on the other side can be exchanged.

Ensemble specifications: The behavior of a role is given by
a process expression built from the null process, action prefix,
guarded choice (branch is nondeterministically selected if
several branches are executable), and process invocation [18].
Guards are predicates over component or role attributes. There
are actions for creating and retrieving role instances, sending
or receiving messages, and invoking an operation of the
owning component. These actions must fit to the declared
ensemble structure, e.g., messages can be only sent by roles
which declare them. A collaboration is specified by an ensem-
ble specification consisting of an ensemble structure Σ and a
set of role behaviors, one for each role type occurring in Σ.

Semantics: Ensemble specifications are semantically inter-
preted by labeled transition systems, i.e., ensemble automata

Adaptation Manager

Adaptable Component

Environment

controller

effector

emitter

sensor

sensoreffector

(a) Aut. Manager pattern [9]

«role type»
AdaptationManager1

«component type»
AdaptableComponent

«role type»
Sensor∗

«role type»
Mode∗

inform
interrupt,
resume

«playedBy»
«playedBy»

«playedBy»

(b) HELENA Adaptation Manager (HAM) pattern

«role type»
AdaptationManager1

«component type»
Robot

«role type»
RandomWalk

DirectedWalk

Rescue

LowBattery

Recharge

«role type»
BatterySensor

VictimSensor

VictimPosSensor

RechargeSensor

.

.

.

.

.

.

inform
interrupt,
resume

«playedBy»
«playedBy»

«playedBy»

(c) Applying the HAM pattern to the search-and-rescue scenario
Fig. 3. Adaptation design patterns

[15], [18]. Ensemble states capture the currently existing
role instances with their data and control states. Transitions
between ensemble states are triggered by role instance creation
or retrieval, communication actions, and operation calls.

C. HELENA Adaptation Manager Pattern

We propose the HAM pattern (cf. Fig. 3b) to realize SAS
by a role-based design. It reuses the ideas from the autonomic
manager pattern to separate monitoring and adaptation logic
from the adaptable component, but augments it by roles which
the component switches to realize the instructed adaptations.

Adaptable component: The central entity of the HAM
pattern is the adaptable component. Since we apply the idea
of roles, the component itself is not active, but is just a data
container and serves as the execution platform for roles which
are the active entities providing context-specific behavior.

Behavioral modes: A component adapts its behavior by
switching between roles representing behavioral modes. The
abstract role type Mode in Fig. 3b is instantiated by concrete
mode role types for every behavioral mode. Although there
can be many different mode role types, the component should
only adopt one mode role at a time1. The adaptation manager
has to take care of deactivating the mode roles which are not
adequate anymore with the message interrupt and activating an
appropriate mode role with the message resume.

Sensors: To decide which mode role should be activated, the
component has to monitor its awareness data. We externalize
monitoring to sensors represented by roles again. The abstract
role type Sensor in Fig. 3b is instantiated by concrete sensor
types for every item of awareness data1. There are many dif-
ferent sensor roles similarly to mode roles, but the component
needs to adopt all sensor roles in parallel to monitor all items
of awareness data. Each sensor is responsible to continuously
inform the adaptation manager about the value of its monitored
awareness data item by sending an inform message.

Adaptation manager: The AdaptationManager is yet an-
other role type on top of the adaptable component which can
only be instantiated once per component. It is responsible for
realizing the adaptation logic. That means, it continuously re-
ceives the sensor data via inform messages, internally decides
how to react to these perceptions, and switches the currently
active mode role by sending interrupt and resume messages.

1Note that it is not part of the pattern how the behaviors of all introduced
roles can be derived. However, in Sec. VI we explain how the specifier adds
behaviors for mode roles and how all other role behaviors can systematically
be derived from an adaptation specification (cf. Sec. III).

Example: Let us illustrate at our search-and-rescue example
how we apply the HAM pattern to derive a role-based HELENA
model (cf. Fig. 3c) for the self-adaptive component type Robot

in Fig. 2. (i) The central entity in the design model is the robot
itself. It is a component type, i.e., it is just the resource for
executing the different behavioral modes. (ii) Each behavioral
mode in the specification is represented by a new role. For
example, the robot is able to execute a behavioral mode like
randomly searching for a victim by adopting the corresponding
role RandomWalk. (iii) For every item of awareness data in the
specification, the corresponding sensor is represented by a new
role, e.g., the sensor role BatterySensor for the awareness
attribute battery. (iv) Finally, the adaptation manager is
installed as a role on top of the robot1.

D. Benefits

(1) The proposed architecture respects separation of con-
cerns as advocated in the autonomic manager pattern. (2) Roles
intuitively express the different tasks of self-adaptive compo-
nents, like being aware of the environment, managing adapta-
tion, and performing particular behavioral modes. (3) We can
automatically derive a formal HELENA model from an adapta-
tion specification following the HAM pattern and equip it with
application logic for each behavioral mode role (cf. Sec. V
and Sec. VI). (4) Relying on the formal foundation of HE-
LENA allows to analyze the derived model for communication
errors and goal satisfaction [18]. With HELENATEXT [17] and
jHELENA [16], it is also possible to automatically generate a
Java implementation for the HELENA model and execute it.

V. MODEL TRANSFORMATION PART 1

Input Artifacts: The first model transformation in the
HELENA development process starts from the adaptation spec-
ification of self-adaptive component types consisting of the
signature and the adaptation automaton.

Output Artifacts: From the adaptation specification, a role-
based architecture in HELENA is systematically derived which
follows the HAM pattern. It consists of the component with
attributes and operations as well as roles for behavioral modes,
sensors, and the adaptation manager. We only exemplify
the translation at our search-and-rescue scenario. The full
translation is described in a technical report [20]. However,
to gain a full HELENA model, the role-based architecture has
to be extended by behaviors for all roles which is pursued in
the second model transformation (cf. Sec. VI).

Example: This model transformation translates the adap-
tation specification in Fig. 2 to the role-based architecture
in Fig. 3c. (i) The robot is reflected by the component type
(Robot, { ownPos, batteryLevel, atVictim, victimPos, rechargeReq },
{updateBL, updateAV, updateVP, updateRR}). We no longer dis-
tinguish (normal) data and awareness data attributes, but for
each item of awareness data we add a special update-operation
which updates the value according to the current perceptions.
(ii) For each behavioral mode, we create a mode role which
can only receive the messages interrupt and resume, e.g.,
the mode role (RandomWalk, {Robot}, ∅, {interrupt, resume}).
(iii) For each awareness data attribute, we create a sensor role
which can only send the message inform, e.g., the sensor role
(BatterySensor, {Robot}, ∅, {inform}). (iv) The adaptation man-
ager (AdaptationManager, {Robot}, ∅, {interrupt, resume, inform})
is yet another role which takes care to adapt the component.

VI. MODEL TRANSFORMATION PART 2
Input Artifacts: The input for the second model transfor-

mation is the role-based architecture which was created during
the first model transformation, the adaptation automaton for
the self-adaptive component type from the initial adaptation
specification, and mode behaviors which define the application
logic in each behavioral in the form of HELENA role behaviors.

Output Artifacts: The transformation completes the role-
based architecture with a behavior for each role gaining a
fully specified HELENA model. The role behaviors are derived
such that the component exhibits the desired adaptive behavior
(the formal translation is described in [20]): The adaptation
manager is informed by the sensors about perceptions. It
internally decides about appropriate adaptations based on
the adaptation automaton and deactivates and activates the
corresponding mode roles. The activated mode role takes care
to execute its associated application logic.

Example: For our search and rescue example, this transfor-
mation takes as input the role-based architecture in Fig. 3c,
the adaptation automaton in Fig. 2, and role behaviors for each
mode role (not shown here). (i) For the robot, no behavior
is generated since it just adopts its associated roles. (ii) The
behavior of each mode role is extended such that the manager
can control its execution. Firstly, the behavior is initially
paused and is just started upon request with the message
resume from the manager. Secondly, the role behavior always
needs to be interruptible and resumable to allow to switch the
currently executed mode. Thus, for example, the role behavior
RBRandomWalk = owner.randomStep . RBRandomWalk is modified to

RBRandomWalk = ?resume.RW

RW = if (true) : {?interrupt.?resume . RW }
or (true) : {owner.randomStep . RW }

(iii) Intuitively, the role behavior of a sensor takes care to
continuously advise the owning component to update the value
of the monitored awareness data attribute and to send the new
value to the adaptation manager. Thus, for example, the role
behavior of the sensor role BatterySensor is given by
RBBatterySensor = am← create(AdaptationManager, owner) . BS

BS = owner.updateBL . am!inform(“battery”, owner.battery) . BS

(iv) The adaptation manager is equipped with a behavior
that is responsible for changing the currently active role of the
managed component according to the adaptation automaton.
We translate the adaptation automaton in three steps into a
role behavior: flattening the automaton to an LTS, deriving a
process term from the LTS, adding initialization of mode roles.
Flattening is rather involved since hierarchy and history needs
to be resolved [21]. Deriving a process term follows the idea
of deriving a right linear grammar from a nondeterministic
finite automaton [22]. Let us exemplify the result of complete
derivation by an excerpt of the behavior of the manager (we
use the notation else in the usual meaning as an abbreviation).

RBAdapationManager = rand← create(RandomWalk, owner) .

. . . low ← create(LowBattery, owner) .

rand!resume . Rand

Rand = ?inform(attr,val) .

if (attr==“battery” & val<0.1) :

{rand!interrupt . low!resume . LowFromRand} . . .
or (else) : {Rand}

LowFromRand = ?inform(attr, val) .

if (attr==“battery” & val==1) :

{low!interrupt . rand!resume . Rand} . . .

First, instances for all behavioral mode roles are created and
the behavior of RandomWalk is started since it is initial in the
adaptation automaton in Fig. 2. According to the adaptation
automaton, the manager then has to wait that it got informed
about a victim’s position, it found a victim, it was requested
as a recharger by another robot, or it runs out of battery where
we only show the latter in the role behavior. Whenever one
of these conditions becomes true, the manager changes the
currently active role. For example, when the battery is low, it
interrupts the role RandomWalk and resumes the role LowBattery.
Afterwards, the manager continues its role behavior in a state
where it knows that the current role is LowBattery and the
previous role was RandomWalk represented by LowFromRand.

VII. RELATED WORK

According to FORMS [23] the distinguishing characteristics
of SAS is the capability of reflection about itself. Our method-
ology is aligned with the idea of reflection since the adaptation
manager decides on the adequacy of the currently executed
behavioral mode separately from the application logic. Fur-
thermore, we consider our methodology as an architecture-
based self-adaptation approach like [12]–[14] since the adap-
tation manager reflects on the architecture of the self-adaptive
component in the sense of currently executed behavioral mode.
In contrast, we propose a role-based architecture for switching
between behavioral modes to adapt a self-adaptive component.

Adaptation Specification Techniques: Luckey and En-
gels [5] specify adaptation logic in adapt-cases (similarly
to use-cases) on top of a system’s architecture. The oper-
ationalization is based on UML activity diagrams and can
be checked against quality properties. Opposed to them, we
specify adaptation logic similarly to UML state charts since
they provide hierarchically composed states and history states.
For implementation, the authors do not introduce any first-
class concepts to realize adapt-cases while we propose a

specific role-based design to transfer the separation of adapta-
tion logic and application logic to implementation. Automata-
based approaches [6]–[8], [24] specify adaptation by evolution
of finite state machines representing behavioral modes. We
augment these approaches by H-LTS with history and hierar-
chy which allow to specify adaptation rules more compactly.
Additionally, we can systematically derive verification and
implementation models due to relying on HELENA.

Role-Based Adaptation: Steegmans et al. [10] propose
a design process for adaptive agents based on roles. They
realize the role model by free-flow trees and a corresponding
framework. In contrast, we transfer the concept of roles to
the implementation to preserve a clean architecture. Self-
Epsilon [11] proposes to employ a controller on each object
in a self-adaptive system. The controller takes care to change
the role of the object depending on the current context. While
conceptually similar to our approach, Self-Epsilon does not
aim at providing a formal role-based model for reasoning or
at explicitly describing the architecture of such systems.

VIII. CONCLUSION

We presented a holistic development process how to engi-
neer SAS separating adaptation logic from application logic.
Key concept is to realize behavioral modes by roles which
a component can dynamically adopt. We propose adaptation
automata as a rich specification technique of adaptation logic
and the HELENA Adaptation Manager pattern to realize a self-
adaptive system by a role-based architecture in HELENA.

Discussion: Though powerful and compact, an H-LTS is
more complex than a standard LTS. Thus, we intend to provide
a graphical representation similarly to UML state charts.
Furthermore, roles are an intuitive concept for encapsulating
context-specific behavior, but roles cannot share behavior, e.g.
obstacle avoidance in our robotic example. Thus, we plan
to introduce hierarchy of roles similar to the subsumption
architecture [25] and concurrent execution of mode roles.

Future work: Similarly to the high-level change man-
agement in ActivFORMS [26] or PSCEL [27], the adapta-
tion strategy could be controlled by hierarchically composing
adaptation managers or techniques from artificial intelligence
could generate adaptation logic from a domain specification or
observations. We also consider collective adaptation [28] and
adaptive collaborations [29] as a very interesting extension.

ACKNOWLEDGMENT

We thank Benedikt Hauptmann, Rolf Hennicker, Philip
Mayer, Andreas Vogelsang, and Danny Weyns for very valu-
able feedback on the proposed methodology. Furthermore, we
are grateful for detailed comments of anonymous reviewers.

REFERENCES

[1] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, ser. LNCS, vol. 5525. Springer, 2009, pp. 1–26.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” Trans. Auton. Adap. Systems, vol. 4, no. 2, 2009.

[3] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering Self-Adaptive Systems
Through Feedback Loops,” in Int. Sym. Software Engineering for Self-
Adaptive Systems. Springer, 2009, pp. 48–70.

[4] IBM Corporation, “An architectural blueprint for autonomic computing,”
2006, http://goo.gl/5Lo5AO.

[5] M. Luckey and G. Engels, “High-Quality Specification of Self-Adaptive
Software Systems,” in Int. Sym. Software Engineering for Adaptive and
Self-Managing Systems. IEEE, 2013, pp. 143–152.

[6] Y. Zhao, D. Ma, J. Li, and Z. Li, “Model Checking of Adaptive Programs
with Mode-extended Linear Temporal Logic,” in Int. Conf. Engineering
of Autonomic and Autonomous Systems. IEEE, 2011, pp. 40–48.

[7] E. Merelli, N. Paoletti, and L. Tesei, “A Multi-Level Model for Self-
Adaptive Systems,” in Int. Workshop Foundations of Coordination
Languages and Self Adaptation, vol. 91. EPCTS, 2012, pp. 112–126.

[8] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, and A. Vandin,
“Adaptable Transition Systems,” in Recent Trends in Algebraic Devel-
opment Techniques, ser. LNCS. Springer, 2013, vol. 7841, pp. 95–110.

[9] M. Puviani, G. Cabri, and F. Zambonelli, “A Taxonomy of Architectural
Patterns for Self-adaptive Systems,” in Int. C* Conf. Computer Science
and Software Engineering. ACM, 2013, pp. 77–85.

[10] E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers, “A Design Process
for Adaptive Behavior of Situated Agents,” in Int. Conf. Agent-Oriented
Software Engineering. Springer, 2005, pp. 109–125.

[11] S. Monpratarnchai and T. Tetsuo, “Applying Adaptive Role-Based
Model to Self-Adaptive System Constructing Problems: A Case Study,”
in Int. Conf. Eng. Autonomic and Autonomous Systems, 2011, pp. 69–78.

[12] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
Architecture-Based Approach to Self-Adaptive Software,” Intelligent
Systems, vol. 14, no. 3, pp. 54–62, 1999.

[13] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[14] J. Kramer and J. Magee, “Self-Managed Systems: An Architectural
Challenge,” in Future of Softw. Eng. IEEE, 2007, pp. 259–268.

[15] R. Hennicker and A. Klarl, “Foundations for Ensemble Modeling - The
Helena Approach,” in Specification, Algebra, and Software, ser. LNCS,
vol. 8373. Springer, 2014, pp. 359–381.

[16] A. Klarl and R. Hennicker, “Design and Implementation of Dynamically
Evolving Ensembles with the Helena Framework,” in Australasian
Software Engineering Conf. IEEE, 2014, pp. 15–24.

[17] A. Klarl, L. Cichella, and R. Hennicker, “From Helena Ensemble
Specifications to Executable Code,” in Int. Sym. Formal Aspects of
Comp. Software, ser. LNCS, vol. 8997. Springer, 2015, pp. 183–190.

[18] A. Klarl, R. Hennicker, and M. Wirsing, “Model-Checking Helena
Specifications with Spin,” in Festschrift for Jose Meseguer, ser. LNCS.
Springer, submitted 2015. [Online]. Available: http://goo.gl/gyysJm

[19] R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “A Formal Approach
to Autonomic Systems Programming: The SCEL Language,” Trans.
Auton. Adap. Systems, vol. 9, no. 2, pp. 7:1–7:29, 2014.

[20] A. Klarl, “Engineering Self-Adaptive System with Role-Based
Architectures in Helena,” Ludwig-Maximilians-Universität München,
Germany, Tech. Rep., 2015. [Online]. Available: http://goo.gl/gyysJm

[21] X. Devroey, G. Perrouin, M. Cordy, A. Legay, P. Schobbens, and P. Hey-
mans, “State Machine Flattening: Mapping Study and Assessment,”
Computing Research Repository, vol. abs/1403.5398, 2014.

[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[23] D. Weyns, S. Malek, and J. Andersson, “FORMS: Unifying Reference
Model for Formal Specification of Distributed Self-Adaptive Systems,”
Trans. Auton. Adap. Systems, vol. 7, no. 1, pp. 8:1–8:61, 2012.

[24] J. Zhang and B. H. C. Cheng, “Model-based development of dynamically
adaptive software,” in Int. Conf. Softw. Eng. ACM, 2006, pp. 371–380.

[25] R. A. Brooks, “A Robust Layered Control System For a Mobile Robot,”
Robotics and Automation, 1986.

[26] M. U. Iftikhar and D. Weyns, “ActivFORMS: Active Formal Models
for Self-Adaptation,” in Int. Sym. Software Engineering for Adaptive
and Self-Managing Systems. ACM, 2014, pp. 125–134.

[27] A. Margheri, R. Pugliese, and F. Tiezzi, “Linguistic Abstractions for
Programming and Policing Autonomic Computing Systems,” in Int.
Conf. Autonomic and Trusted Computing. IEEE, 2013, pp. 404–409.

[28] M. Puviani, G. Cabri, and L. Leonardi, “Enabling Self-expression: the
Use of Roles to Dynamically Change Adaptation Patterns,” in Int. Conf.
Self-Adaptive and Self-Organizing Systems. IEEE, 2014, pp. 14–19.

[29] H. Zhu, M. Zhou, and M. Hou, “Adaptive Collaboration Based on the
E-CARGO Model,” Agent Technol. Syst., vol. 4, no. 1, pp. 59–76, 2012.

http://goo.gl/5Lo5AO
http://goo.gl/gyysJm
http://goo.gl/gyysJm

	Introduction
	Search-And-Rescue Scenario
	Adaptation Specification
	Signature of Self-Adaptive Component Types
	Adaptation Automata
	Benefits

	Role-Based Adaptation Design Pattern
	Autonomic Manager Pattern
	Helena in a Nutshell
	Helena Adaptation Manager Pattern
	Benefits

	Model Transformation Part 1
	Model Transformation Part 2
	Related Work
	Conclusion
	References

