
From Helena Ensemble Speci�cations

to Promela Veri�cation Models

Annabelle Klarl

Ludwig-Maximilians-Universität München, Germany?

Abstract. With Helena, we introduced a modeling approach for dis-
tributed systems where components dynamically collaborate in ensem-
bles. Conceptually, components participate in a goal-oriented collabora-
tion by adopting certain roles in the ensemble. To verify the goal-directed
behavior of ensembles, we propose to systematically translate Helena
speci�cations to Promela and verify them with the model-checker Spin.
In this paper, we report on tool support for an automated transition from
Helena to Promela. Relying on the Xtext workbench of Eclipse, we
provide a code generator from the domain-speci�c-language Helena-
Text to Promela. The generated Promela model simulates the two
layers, components and their adopted roles from Helena, and allows
dynamic role creation as well as asynchronous communication of roles.

1 Introduction

Ensemble-based systems are distributed systems of components which dynam-
ically collaborate in groups. In Helena [5], components are thought of as a
basic layer providing computing power or storage resources. Collaborations are
modeled by ensembles, where components adopt (possibly concurrently) di�erent
roles to actively participate in ensembles. The concept of roles allows to focus on
the particular tasks which components ful�ll in collaborations and to structure
implementation by realizing roles as threads executed on top of components [9].

Ensembles always collaborate for some global goal. Such goals are often tem-
poral properties and are therefore speci�ed in linear temporal logic (LTL) [11].
To allow veri�cation of Helena models for goals, we already proposed in [6] to
translate Helena to Promela and check satisfaction of goals with the model-
checker Spin [7]. We proved the correctness of the translation for a simpli�ed
variant of Helena which restricts ensemble speci�cations to their core concepts.

In this paper, we report on the extension of the translation to full Helena
and its automation based on the Xtext workbench of Eclipse. With the ex-
tended translation, we are able to simulate the two layers of Helena, com-
ponents and their adopted roles, in Promela. Due to the automation of the
translation, we augment Helena ensemble speci�cations with immediate veri-
�cation support in Spin. To this end, an Eclipse plug-in is implemented which
produces an executable Promela speci�cation from a Helena ensemble speci-
�cation written in the domain-speci�c language HelenaText [8].

? This work has been partially sponsored by the EU project ASCENS, 257414.



2 Helena in a Nutshell

We introduce the concepts of the Helena approach at a peer-2-peer network
supporting the distributed storage of �les which can be retrieved upon request.

Components: The foundation of Helena ensembles [5] are components

characterized by their type, e.g., component type Peer in Fig. 1. Such a type
manages associations to other components, e.g., the association neighbor in our
example. It stores basic information, that is useful in all roles the component can
adopt, in attributes, e.g., the attribute hasFile. Lastly, it provides operations
which can be invoked by its roles, e.g., the operation printFile (not shown).

Roles: A role type rt is a tuple (rtnm, rtcomptypes, rtattrs, rtmsgs): rtnm
is the name of the role type; the set rtcomptypes determines the component
types which can adopt the role; the set rtattrs allows to store data that is only
relevant for performing the role; the set rtmsgs determines the outgoing and
incoming messages supported by the role. In our example, we have three role
types which can all be adopted by components of the type Peer (cf. Fig. 1): The
peer adopting the role Requester wants to download the �le, peers adopting the
role Router forward the request through the network, and the peer adopting the
role Provider provides the �le. Only the role type Requester has an attribute.
Outgoing and incoming messages are annotated as arrows for all role types.

Ensemble Structures: To de�ne the structural characteristics of a collab-
oration, an ensemble structure speci�es the role types whose instances form the
ensemble, determines how many instances of each role type may contribute by
a multiplicity, and de�nes the capacity of the input queue of each role type. We
assume that between two role types the messages which are output on one side
and input on the other side can be exchanged. For our example, instances of the
three aforementioned role types collaborate (cf. Fig. 1). Thereby, an ensemble
has to employ exactly one requesting peer, arbitrarily many routers, and possibly
one router as determined by the multiplicities associated to each role type.

«role type»
Requester

boolean hasFile

mult=1,cap=2

«component type»
Peer

boolean hasFile

«role type»
Router

mult=1..*,cap=2

«role type»
Provider

mult=0..1,cap=1

reqAddr(..)(..)

sndAddr(..)(..)

reqFile(..)(..)

sndFile(..)(..)

reqAddr(..)(..)
«adoptedBy»

«adoptedBy» «adoptedBy»

neighbor

Fig. 1: Ensemble structure for the p2p example in graphical notation

Ensemble Speci�cations: The behavior of a role is speci�ed by a process
expression built from the null process nil, action pre�x a.P , guarded choice
if(guard1) {P1} or(guard2) {P2} (branch is nondeterministically selected if sev-
eral branches are executable), and process invocation [6]. Guards are predicates
over component or role attributes. There are actions for creating (create) and

2



retrieving (get) role instances, sending (!) or receiving (?) messages, and invok-
ing operations of the owning component. These actions must �t to the declared
ensemble structure, e.g., messages can be only sent by roles which declare them.
Additionally, state labels are used to mark a certain progress of execution in
the role behavior. Fig. 2 shows the behavior speci�cation of a Router. Initially,
a router can receive a request for an address. Depending on whether its owner
has the �le, it either creates a provider role instance and sends it back to the
requester in Pprovide or forwards the request to another router in Pfwd if possible.

roleBehavior Router = ?reqAddr(Requester rq)() .

if (owner.hasFile) then {Pprovide}
or (!owner.hasFile) then {Pfwd}

Pprovide = p←create(Provider, owner) . rq!sndAddr(p)() . nil

Pfwd = if (plays(Router , owner.neighbor)) then {nil}
or (!plays(Router , owner.neighbor)) then {Pcreate}

Pcreate = r←create(Router, owner.neighbor) . r!reqAddr(rq)() . Router

Fig. 2: Role behavior of a Router for the p2p example

A complete collaboration is given by an ensemble speci�cation consisting of
an ensemble structure Σ and a set of role behaviors, one for each role type in
Σ. The complete speci�cation of the example can be found in [10].

Semantics: Ensemble speci�cations are semantically interpreted by labeled
transition systems, i.e., ensemble automata [5,6]. Ensemble states capture the
currently existing role instances with their data and control states. Transitions
between ensemble states are triggered by role instance creation or retrieval, com-
munication actions, and operation calls. The communication style (synchronous
or asynchronous) is determined by the size of the input queues of the role types.

Goal Speci�cations: Goals are expressed by LTL formulae over particular
Helena propositions: A state label proposition is of the form rt [n]@label . It is
satis�ed if there exists a role instance n of type rt whose next performed action
is the state label label. An attribute proposition must be boolean and is built
from arithmetic and relational operators, data constants, and propositions of
the form rt [n]:attr (or ct [n]:attr). An attribute proposition rt [n]:attr is satis�ed
if there exists a role instance n of type rt such that the value of its attribute
attr evaluates to true (and analogously for component attributes). LTL for-
mulae and their satisfaction are inductively de�ned from Helena propositions,
propositional operators ¬ and ∧ and LTL operators X,�,♦,U and W as usual.

For the p2p example, we want to express that the requester will always receive
the requested �le if the �le is available in the network. We assume a network of
three peers and formulate the following achieve goal in LTL which refers to the
values of the attribute hasFile of component type Peer and role type Requester:

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile) ⇒ ♦Requester[1]:hasF ile)

3 Translation from Helena to Promela

To verify Helena speci�cations for their intended goals, we rely on the model-
checker Spin [7]. In [6], we discussed that the translation of a simpli�ed variant

3



of Helena to Promela preserves satisfaction of LTL\X, the fragment of LTL
that does not contain the next operator X. This translation abstracts from the
underlying component-based platform and considers only role types and their
interactions. In role behaviors, guarded choice and arbitrary process invocations
are not allowed and any notion of data is omitted. To cope with these features,
we propose to represent components and roles by two kinds of processes in
Promela. They di�er in communication abilities and behavior since components
are only storage and computing resources while roles are active entities.

Communication Abilities: (1) Components only interact with roles, but
not with other components. Roles advise components to adopt other roles, re-
quest references to already adopted roles from their owning components, or in-
voke operations on them. Thus, each Promela process for a component relies
on a dedicated synchronous channel self , only used for communication between
itself and its adopted roles. The roles refer to the channel under the name owner.
(2) Roles interact by exchanging directed messages on input queues. Thus, each
Promela process for a role relies on a dedicated (possibly asynchronous) chan-
nel self in addition to the aforementioned channel owner to model its input
queue. Since channels are global in Promela, but input queues are local in He-
lena, special care has to be taken that this channel is only available to processes
which are allowed to communicate with the corresponding role in Helena.

Behavior: (1) The Promela process for a component implements a do-
loop to wait for requests from its roles on the self channel. Depending on the
request, it runs some internal computation and sends a reply. E.g., to adopt a
role, it creates a new channel and spawns a new process (representing the role)
to which it hands over its own self channel as the role's owner channel and the
newly created channel as the role's self channel. Afterwards, it sends the role's
self channel to the role requesting the adoption such that the two roles can
communicate via this channel. (2) The Helena role behaviors must be re�ected
by the corresponding Promela process. In [6], we proposed to translate action
pre�x to sequential composition, nondeterministic choice to the if -construct, and
recursive behavior invocation to a goto to the beginning of the role behavior.
Sending and receiving messages was mapped to message exchange on the self
channel of roles and role creation to process creation with the run-command. To
extend this to full Helena, guarded choice is translated to the if -construct with
the guard as �rst statement. Arbitrary process invocation is realized by jumping
to labels marking the beginning of processes. On the level of actions, we extend
message exchange by data relying on user-de�ned data types in Promela. To
cope with the component level of Helena, a new role is created by issuing an
appropriate request on the owning component and spawning the new role process
from there. The introduction of components also allows us to implement role
retrieval and operation calls by corresponding requests from role to component.

LTL\X Preservation: Similarly to the simpli�ed translation in [6], all He-
lena constructs are directly translated to Promela while introducing some
additional silent steps like gotos. These do not hamper stutter trace equivalence
and thus satisfaction of LTL\X is preserved, though not formally shown here.

4



4 Automation of the Translation

To automate the translation, a code generator, taking a HelenaText [8] en-
semble speci�cation as input, was implemented on top of the Xtext workbench
of Eclipse relying on Xtend as a template language.

Component Types: For each component type, the excerpt of the Xtend
template in Fig. 3 generates a new process type in Promela. Most importantly,
this process type implements a do-loop (line 4-10) where it can repeatedly receive
requests from its adopted roles via its self channel. Depending on the type of
the received request, i.e., req.optype, it either executes an operation (line 7),
adopts a new role (line 9), or retrieves an already existing one (line 10).

1 def static compileProctype(ComponentType ct, Iterable<RoleType> roleTypes) {
2 ’’’ proctype «ct.name»(chan self; ...) {
3 «FOR rt:roleTypes» chan «rt.name» = [«rt.capacity»] of { Msg }; ...
4 do
5 ::self?req ->
6 if
7 «FOR o:ct.ops» ::req.optype==«o.name» -> // execute operation ...
8 «FOR rt:roleTypes»
9 ::req.optype==«rt.create»-> ...run «rt.name»(self,«rt.name»);answer!«rt.name»

10 ::req.optype==«rt.get» -> ...answer!«rt.name» ...

Fig. 3: Excerpt of the Xtend template for the translation of component types

Role Types: For each role type, the Xtend template in Fig. 4 generates a
new process type in Promela. Two parameters for the owner and self chan-
nels are declared (line 2) and the role behavior is translated (line 3), e.g., action
pre�x is represented by sequential composition (line 4-6) and guarded choice
by an if -construct (line 7-14). Furthermore, the generation of the reception of
messages and create actions is shown in the right part of Fig. 4 since they repre-
sent two di�erent types of communication: An incoming message is represented
by a user-de�ned data type Msg (line 2), to cope with data parameters, and
is received on the self channel (line 3). The role checks whether the received
message was actually expected (line 4) and unpacks its parameters (line 5-7).
For a create action, the component crt.comp is asked to adopt a role of type
crt.roleInst.type (line 12). The component is responsible for creating the role
(cf. Fig. 3) and sends back the self channel of the newly created role (line 13).
The implementation of the generator and the HelenaText speci�cation of the
p2p example as well as its generated Promela translation can be found in [10].

5 Conclusion

We presented how to verify Helena speci�cations for goals speci�ed by LTL for-
mulae with the model-checker Spin. We de�ned a translation of Helena speci�-
cations and its two-layered architecture into Promela which was implemented
on top of Xtext. In �rst experiments with larger case studies, the application
of Spin scales well with the size of the Helena model since the state space only
grows by a constant factor compared to Helena. For future work, we especially
want to add support for relating the Spin output back to Helena.

5



1 def genRoleBehavior(RoleBehavior rb) {
2 ’’’ proctype «rb.name»(chan owner,self){
3 «rb.genProcTerm» ...
4 def genProcTerm(ActionPrefix term) {
5 ’’’ «term.action.genAction»;
6 «term.procTerm.genProcTerm» ...
7 def genProcTerm(GuardedChoice term) {
8 ’’’ if
9 ::(«term.ifGuard.genGuard) ->

10 «term.ifProcTerm.genProcTerm»
11 «FOR i : 0 ..< term.orGuards.size»
12 ::(«term.orGuards.get(i).genGuard») ->
13 «term.orProcTerms.get(i).genProcTerm»

1 def genAction(IncomingMessage m) {
2 ’’’ Msg «m.name»;
3 self?«m.name»;
4 «m.name».msgtype == «m.type;
5 «FOR p:m.rparams» chan «p.name» = ...;
6 «FOR p:m.dparams»
7 «p.type» «p.name» = ...;
8 ...
9 def genAction(CreateAction crt) {

10 ’’’ chan «crt.roleInst.name»;
11 chan answer = [0] of { chan };
12 «crt.comp!«crt.roleInst.type»,answer;
13 answer?«crt.roleInst.name»;

Fig. 4: Excerpt of the Xtend template for the translation of role types

Our approach is in-line with the goal-oriented requirements approach KAOS
[11]. However, KAOS speci�cations are translated to the process algebra FSP
which cannot represent directed communication and dynamic process creation.
Furthermore, techniques for verifying ensemble-based systems have been pro-
posed. In [4], ensembles are described by simpli�ed SCEL programs and trans-
lated to Promela, but the translation is neither proved correct nor automated
and cannot cope with dynamic creation of components. DFINDER [2] imple-
ments e�cient strategies exploiting compositional veri�cation of invariants to
prove safety properties for BIP ensembles, but again does not deal with dy-
namic creation of components. DEECo ensembles [1] are implemented with the
Java framework jDEECo and veri�ed with Java Path�nder [2]. Thus, they do
not need any translation. However, since DEECo relies on knowledge exchange
rather than message passing, they do not verify any communication behaviors.

References

1. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M.: DEECO: An
Ensemble-based Component System. In: CBSE 2013. pp. 81�90. ACM (2013)

2. Combaz, J., Bensalem, S., Kofron, J.: Correctness of Service Components and
Service Component Ensembles. In: Software Engineering for Collective Autonomic
Systems, LNCS, vol. 8998. Springer (2015)

3. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.:
The SCEL Language: Design, Implementation, Veri�cation. In: Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998. Springer (2015)

4. De Nicola, R., Lluch-Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and Verifying Component Ensembles. In: From Pro-
grams to Systems. LNCS, vol. 8415, pp. 69�83. Springer (2014)

5. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling - The Helena Ap-
proach. In: SAS 2014. LNCS, vol. 8373, pp. 359�381. Springer (2014)

6. Hennicker, R., Klarl, A., Wirsing, M.: Model-Checking Helena Speci�cations with
Spin. In: LRC 2015. LNCS, Springer (to appear 2015), http://goo.gl/a1dya2

7. Holzmann, G.: The Spin Model Checker. Addison-Wesley (2003)
8. Klarl, A., Cichella, L., Hennicker, R.: From Helena Ensemble Speci�cations to

Executable Code. In: FACS 2014. LNCS, vol. 8997, pp. 183�190. Springer (2014)
9. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving

Ensembles with the Helena Framework. In: ASWEC 2014. pp. 15�24. IEEE (2014)
10. Klarl, A., Hennicker, R.: The Helena Framework (2015), http://goo.gl/a1dya2
11. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Speci�cations. Wiley (2009)

6

http://goo.gl/a1dya2
http://goo.gl/a1dya2

	From Helena Ensemble Specifications to Promela Verification Models

