
Model-Checking Helena Ensembles with Spin?

Rolf Hennicker, Annabelle Klarl, and Martin Wirsing

Ludwig-Maximilians-Universität München, Germany

Dedicated to José Meseguer

Abstract. The Helena approach allows to specify dynamically evolv-
ing ensembles of collaborating components. It is centered around the no-
tion of roles which components can adopt in ensembles. In this paper, we
focus on the early veri�cation of Helena models. We propose to trans-
late Helena speci�cations into Promela and check satisfaction of LTL
properties with Spin [11]. To prove the correctness of the translation,
we consider an SOS semantics of (simpli�ed variants of) Helena and
Promela and establish stutter trace equivalence between them. Thus,
we can guarantee that a Helena speci�cation and its Promela trans-
lation satisfy the same LTL formulae (without next). Our correctness
proof relies on a new, general criterion for stutter trace equivalence.

1 Introduction

The Helena approach [10] proposes to model large distributed systems of goal-
oriented collaborations of components by dynamically evolving ensembles where
the participating components play certain roles. By adopting a role, a component
executes a role-speci�c behavior. The introduction of roles allows to focus on
the particular tasks which components ful�ll in speci�c collaborations and to
structure the implementation of ensemble-based systems [13,14].

Ensembles always collaborate towards some global goals. Such goals are of-
ten temporal properties which we specify by linear temporal logic (LTL) formu-
lae [17]. In this paper, we focus on the early (pre-implementation) veri�cation
of Helena models for their intended goals. We propose to translate Helena
speci�cations into Promela and check satisfaction of LTL properties with the
model-checker Spin [11]. Promela is well-suited as a target language since it
supports dynamic creation of concurrent processes and asynchronous communi-
cation. Our contribution is as follows: Firstly, we propose a syntactic translation
of a simpli�ed variant of Helena (called HelenaLight), which restricts en-
semble speci�cations to the core concepts of our modeling approach, to a subset
of Promela (called PromelaLight), which is su�cient to express all Hele-
naLight concepts. Secondly, we prove the correctness of the translation. For

? This work has been partially sponsored by the European Union under the FP7-
project ASCENS, 257414.

this purpose, we de�ne a formal SOS semantics for HelenaLight and Prome-
laLight speci�cations. The latter is based on the semantics for full Promela
in [20]. On this semantic basis, we establish stutter trace equivalence between the
semantics of a HelenaLight speci�cation and its PromelaLight translation.
Then, we reuse results from the literature [1] that satisfaction of LTL formulae
(without next) is preserved by stutter trace equivalence. As a consequence, we
can verify LTL properties for a HelenaLight speci�cation by model-checking
its PromelaLight translation with Spin. To prove stutter trace equivalence
between HelenaLight and PromelaLight, we investigate a new, general cri-
terion that Kripke structures are stutter trace equivalent if particular stutter
simulations (called ≈-stutter simulations) can be established in both directions.

In Sec. 2, we explain foundations on LTL and propose our criterion for stutter
trace equivalence which entails LTL\X preservation. In Sec. 3, we summarize the
Helena modeling approach and present the running example of a peer-2-peer
network storing �les. Sec. 4 de�nes syntax and semantics of HelenaLight and
Sec. 5 for PromelaLight resp. In Sec. 6, we provide the formal translation
from HelenaLight to PromelaLight and, in Sec. 7, establish the desired
correctness results. Sec. 8 discusses model-checking of Helena speci�cations.

Personal Note. José, Rolf, and Martin know each other since the eighties where
they investigated the foundations of algebraic speci�cations, José with Joseph
Goguen in the initial algebra setting, and Martin and Rolf inspired by the CIP
program development methodology from the loose and observational seman-
tics point of view. Behavioral speci�cations and equivalence of algebras were
already studied by José and Joseph in [8] which was a fruitful source for the
thesis of Rolf. In the beginning of the nineties, Martin was looking for an ap-
propriate semantical framework for underpinning the typically informal or semi-
formal object-oriented methods with a formal framework. Rewriting logic in-
vented by José a few years earlier appeared to be the perfect tool: a simple
computational logic that supports concurrent computation, logical deduction,
and object-oriented features. Martin is still very grateful that José gave him
the opportunity to present his �rst results on integrating formal speci�cations
into pragmatic object-oriented development at the �rst WRLA in 1996 [22].
Later, José, Rolf, and Martin became all members of IFIP WG 1.3. and José
and Martin worked together on the algebraic foundation and analysis of mod-
ern programming paradigms including studies of the semantic foundations of
multi-paradigm languages [2], the analysis of denial of service attacks [6], and
the speci�cation and correct implementation of the distributed programming
language KLAIM [7]. Our current paper follows the same aim; we present the
formal foundation of Helena ensemble speci�cations and use results related to
José's seminal paper on algebraic simulations [19] for proving the correctness of
model-checking Helena ensembles with Spin.

It is a great pleasure to know and work with José since so many years; we
admire his broad and deep knowledge in many areas; it is inspiring to discuss
with him and he is a very kind and warm hearted colleague and friend. We are
looking forward to many further exciting scienti�c exchanges with José.

2

2 Foundations on LTL\X Preservation

In this section, we review Kripke structures, linear temporal logic (LTL), and sat-
isfaction of LTL formulae. We propose how to induce Kripke structures from la-
beled transitions systems (which will be used for the semantics of HelenaLight
and PromelaLight speci�cations). Furthermore, we propose a criterion for
stutter trace equivalence of Kripke structures which entails LTL\X

1 preserva-
tion according to the literature in [1].

LTL in Kripke Structures: A Kripke structure consists of a set of states
connected by (unlabeled) transitions. The states are labeled by sets of atomic
propositions which hold in the state and some states are marked as initial states.

De�nition 1 (Kripke Structure). Let AP be a set of atomic propositions.
A Kripke structure K over AP is a tuple (SK , IK ,−→K , FK) such that SK is a
set of states, IK ⊆ SK is a set of initial states, −→K ⊆ SK×SK is an (unlabeled)
transition relation without terminal states (i.e., ∀s ∈ SK .∃s′ ∈ SK . s −→K s′),
and FK : SK → 2AP is a labeling function associating to each state the set of
atomic propositions that hold in it.

For a Kripke structure K = (SK , IK ,−→K , FK), we further de�ne: A path of
K is an in�nite sequence p = s0s1s2 . . . (with si ∈ SK for all i ∈ N) such that
s0 ∈ IK and si −→K si+1. A trace of K is an in�nite sequence t = t0t1t2 . . . such
that there exists a path p = s0s1s2 . . . in K and ti = FK(si) for all i ∈ N.

To describe temporal properties, we use linear temporal logic (LTL).

De�nition 2 (LTL [1]). Let AP be a set of atomic propositions. LTL formulae
over AP are inductively de�ned by:

φ = p ∈ AP (atomic proposition)

| ¬φ | φ ∧ ψ (proposition logic operators)

| Xφ | ♦φ | �φ | φUψ (linear temporal logic operators)

Disjunction, implication, and equivalence are given by the usual abbreviations.
The set of LTL formulae over AP is denoted by LTL(AP).

Satisfaction of LTL formulae is de�ned by the usual inductive de�nition [1].

De�nition 3 (Satisfaction of LTL in Kripke Structures). Let K = (SK ,
IK ,−→K , FK) be a Kripke structure over AP , t = t0t1t2 . . . a trace of K, and
φ ∈ LTL(AP); t|i denotes the subsequence titi+1ti+2 . . . of t.

The satisfaction of φ for trace t, written t |= φ, is inductively de�ned by

� t |= p, if p ∈ t0,
� t |= ¬φ, if t 6|= φ,
� t |= φ ∧ ψ, if t |= φ and t |= ψ,
� t |= Xφ, if t|1 |= φ,
� t |= ♦φ, if there exists k ≥ 0 such that t|k |= φ,

1 LTL\X is the fragment of LTL that does not contain the next operator X.

3

� t |= �φ, if for all k ≥ 0 holds t|k |= φ,
� t |= φUψ, if there exists k ≥ 0

such that t|k |= ψ and for all 0 ≤ j < k holds t|j |= φ,

The Kripke structure K satis�es an LTL formula φ, written K |= φ, if all
traces of K satisfy φ.

LTL in Labeled Transition Systems: In contrast to Kripke structures,
labeled transition systems do not label states with atomic propositions, but
transitions with actions.

De�nition 4 (Labeled Transition System). A labeled transition system
(LTS) T is a tuple (ST , IT , AT ,−→T) such that ST is a set of states, IT ⊆ ST is
a set of initial states, AT is a set of actions such that the silent action τ /∈ AT ,
and −→T ⊆ ST × (AT ∪ τ)× ST is a labeled transition relation.

For an LTS T = (ST , IT , AT ,−→T), we further de�ne: a∗ denotes a (possi-
bly empty) sequence of a actions. If w = a1 . . . an holds for some n ∈ N and

a1, . . . , an ∈ (AT ∪ τ), then s
w−→T s′ stands for s = s′, if n = 0, and s

a1−→T

s1 . . . sn−1
an−−→T s

′ with appropriate s1, . . . , sn−1 otherwise. The LTS T together
with a set of atomic propositions AP and a satisfaction relation s |= φ (for
s ∈ ST and φ ∈ LTL(AP)) induces a Kripke structure K(T) = (ST , IT ,−→•T , F).
The labeled transition relation −→T is transformed into an unlabeled, total tran-
sition relation −→•T which forgets the actions and adds a new transition s −→•T s
for each terminal state s ∈ ST . The labeling function F : ST → 2AP is de�ned
by F(s) = {p ∈ AP | s |= p}.

De�nition 5 (Satisfaction of LTL in Labeled Transition Systems). Let
T = (ST , IT , AT ,−→T) be a labeled transition system, AP a set of atomic propo-
sitions, s |= φ a satisfaction relation for s ∈ ST and φ ∈ LTL(AP).

T satis�es φ, written T |= φ, if K(T) |= φ, i.e., the induced Kripke struc-
ture K(T) satis�es φ.

LTL\X Preservation: Lastly, we investigate when two Kripke structures
satisfy the same set of LTL\X formulae. Therefore, we introduce the notion of
stutter trace equivalence.

� Two paths of Kripke structures over the same set of atomic propositions AP
are stutter trace equivalent if their traces only di�er in the number of their
stutter steps, i.e., there exist sets of atomic propositions Pi ⊆ AP (with
i ∈ N) such that the traces of both paths have the form P+

0 P
+
1 P

+
2 . . . where

P+
i denotes a non-empty sequence of the same set Pi.

� Two Kripke structures K1 and K2 are stutter trace equivalent if for each
path of K1 there exists a stutter trace equivalent path of K2 and vice versa.

To provide a criterion for stutter trace equivalence of Kripke structures, we
propose the notion of a ≈-stutter simulation.

4

De�nition 6 (≈-Stutter Simulation). Let K1 = (S1, I1,−→1, F1) and K2 =
(S2, I2,−→2, F2) be two Kripke structures over AP . Let ≈ ⊆ S1×S2 be a relation.

A relation ∼ ⊆ S1 × S2 is a ≈-stutter simulation of K1 by K2 if (1) ∼ ⊆ ≈
and (2) for all s ∈ S1, t ∈ S2 with s ∼ t, if s −→1 s

′, then s′ ∼ t or there exists
t −→2 t1 −→2 . . . −→2 tn −→2 t

′
1 −→2 . . . −→2 t

′
m −→2 t

′ (n,m ≥ 0) such that s ≈ ti for
all i ∈ {1, . . . , n}, s′ ≈ t′j for all j ∈ {1, . . . ,m} and s′ ∼ t′.

K1 is ≈-stutter simulated by K2 if there exists a ≈-stutter simulation ∼ of
K1 by K2 such that s0 ∼ t0 for all s0 ∈ I1, t0 ∈ I2.

Stutter trace equivalence does not require preservation of the branching struc-
ture of the underlying Kripke structures. Therefore, interestingly, the notion of
≈-stutter simulations (compared to stutter bisimulations [19] preserving branch-
ing) is su�cient to provide a criterion whether two Kripke structures are stutter
trace equivalent.

Theorem 1 (Stutter Trace Equivalence). Let K1 and K2 be two Kripke
structures over AP with states S1, S2 resp. Let ≈ ⊆ S1 × S2 be a property-
preserving relation, i.e., for all s ∈ S1, t ∈ S2, if s ≈ t, then F1(s) = F2(t),
and ≈−1 its inverse relation. If K1 is ≈-stutter simulated by K2 and K2 is
≈−1-stutter simulated by K1, then K1 and K2 are stutter trace equivalent.

Proof. Since K1 is ≈-stutter simulated by K2, each path of K1 is simulated by
a corresponding path of K2 such that on all paths, the states related by ≈ have
the same properties. The same holds vice versa for ≈−1. ut

The question arises which LTL formulae are satis�ed by two stutter trace
equivalent Kripke structures. It is clear that the next operator X of temporal
logic is not preserved since stutter steps are allowed. However, if we restrict
our attention to the temporal logic LTL\X, we can use a result of [1] which
shows that all formulae of LTL\X are preserved. In practice, eliminating the next
operator is not a great loss since interesting properties are not so much concerned
with what happens in the next step as to what eventually happens [16].

Theorem 2 (LTL\X Preservation). Let K1 and K1 be two stutter trace equiv-
alent Kripke structures over AP . For any LTL\X formula φ over AP , we have
K1 |= φ⇔ K2 |= φ.

Proof. The proof can be found in [1, pp. 534�535] (Thm. 7.92 and Cor. 7.93).

3 The Helena Approach

The role-based modeling approach Helena [10] provides concepts to describe
systems where components team up in ensembles to perform global goal-oriented
tasks. To participate in an ensemble, a component plays a certain role. This
role adds role-speci�c behavior to the component and allows collaboration with
(the roles of) other components. By switching between roles, the component
changes its currently executed behavior. By adopting several roles in parallel, a

5

component can concurrently execute di�erent behaviors and participate at the
same time in di�erent ensembles.

Components: Component instances are classi�ed by component types. They
are considered as carriers of basic information relevant across many ensembles.
They provide basic capabilities to store data in attributes and to perform compu-
tations by operations. Additionally, they can be connected to other component
instances by storing references to them.

Roles: Whenever a component instance joins an ensemble, the component
adopts a role by creating a new role instance and assigning it to itself. The kind
of roles a component is allowed to adopt is determined by role types. A role type
de�nes role-speci�c attributes and a set of incoming and outgoing message types
which are supported for interaction and collaboration between role instances.

P2P Example: We consider a peer-2-peer network supporting the dis-
tributed storage of �les which can be retrieved upon request. Several peers are
connected in a ring structure and work together to request and transfer a �le:
One peer plays the role of the Requester of the �le, other peers act as Routers
and the peer storing the requested �le adopts the role of the Provider. All these
roles can be adopted by components of type Peer. Fig. 1 shows the component
type Peer and the role type Requester in a graphical representation similar to
UML classes. For simplicity, we only consider peers which can store one single
�le. The attribute hasFile of a Peer (cf. Fig. 1a) indicates whether the peer has
the �le; the �le's content information is represented by the attribute content. A
Peer is connected to its neighbor depicted by the association in Fig. 1a. The role
type Requester indicates by the notation Requester:{Peer} that any component
instance of type Peer can adopt that role. It stores whether it already has the �le
in its attribute hasFile and supports two incoming and two outgoing messages.

«component type»
Peer

boolean hasFile
int content

neighbor

(a) Component type Peer

«role type»
Requester:{Peer}

boolean hasFile

out reqAddr(Requester req)()
in sndAddr(Provider prov)()
out reqFile(Requester req)()
in sndFile()(int cont)

(b) Role type Requester

Fig. 1: Types occurring in the p2p example

Ensemble Structures: To de�ne the structural characteristics of a collab-
oration, an ensemble structure speci�es the role types whose instances form the
ensemble, determines how many instances of each role type may contribute by
a multiplicity (like 0..1, 1, ∗, 1..∗ etc.), and de�nes the capacity of the input
queue for each role type. We assume that between instances of two role types
the messages which are output on one side and input on the other side can be
exchanged on the input queues of the role instances.

P2P Example: Fig. 2 shows a graphical representation of the ensemble
structure for the p2p example. It consists of the three role types Requester,
Router, and Provider with associated multiplicities and input queue capacities.

6

«role type»
Requester

mult=1,cap=2

«role type»
Router

mult=1..*,cap=2

«role type»
Provider

mult=0..1,cap=1

reqAddr(..)()

sndAddr(..)()

reqFile(..)()

sndFile()(..)

reqAddr(..)()

Fig. 2: Ensemble structure Σtransfer for the p2p example

Role Behaviors and Ensemble Speci�cations: An ensemble speci�ca-
tion adds dynamic behavior to an ensemble structure Σ by equipping each role
type occurring in Σ with a role behavior. A role behavior is given by a process
expression built from the null process nil, action pre�x a.P , conditional selection
if (condition1) then {P1}(or (condition2) then {P2})∗ (with nondeterministic
choice if several branches are executable), and process invocation. There are ac-
tions for creating (create) and retrieving (get) role instances, sending (!) or
receiving (?) messages, and invoking operations of the owning component. Addi-
tionally, state labels can be used to mark a certain progress of execution in the
role behavior (we will use these labels in atomic propositions to express goals).
We additionally use prede�ned variables like self to refer to the current role
instance and owner to refer to the owning component instance. The attributes
of the current role instance and its owning component instance are accessed in a
Java like style and we provide a prede�ned query plays(rt,ci) to ask whether
the component instance ci currently plays the role rt.

P2P Example: Fig. 3 shows the behavior speci�cation of a Router. Initially,
a router can receive a request for an address. Depending on whether its owner
has the �le, it either creates a provider role instance and sends it back to the
requester in Pprovide or forwards the request to another router in Pfwd if possible.

roleBehavior Router = ?reqAddr(Requester rq)() .

if (owner.hasFile) then {Pprovide}
or (!owner.hasFile) then {Pfwd}

Pprovide = p←create(Provider, owner) . rq!sndAddr(p)() . nil

Pfwd = if (plays(Router , owner.neighbor)) then {nil}
or (!plays(Router , owner.neighbor)) then {Pcreate}

Pcreate = r←create(Router, owner.neighbor) . r!reqAddr(rq)() . Router

Fig. 3: Role behavior of a Router

LTL for Ensemble Speci�cations: To express goals over Helena ensem-
ble speci�cations, we use linear temporal logic (LTL) formulae over a particular
set of atomic Helena propositions AP : A state label proposition is of the form
rt [i]@label . It is satis�ed if there exists a role instance i of type rt whose next per-
formed action is the state label label . An attribute proposition must be boolean
and is built from arithmetic and relational operators, data constants, and propo-
sitions of the form rt [i]:attr (or ct [i]:attr). An attribute proposition rt [i]:attr is
satis�ed if there exists a role instance i of type rt such that the value of its
attribute attr evaluates to true (and analogously for component attributes).

7

LTL formulae over Helena propositions and their satisfaction are inductively
de�ned as already described in Sec. 2.

For the p2p example, we want to express that the requester will always receive
the requested �le if the �le is available in the network. We assume a network of
three peers and formulate the following achieve goal in LTL which refers to the
values of the attribute hasFile of component type Peer and role type Requester:

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile)⇒ ♦Requester[1]:hasF ile)

In the next sections we will consider a simpler variant of Helena and present
a precise formalization of ensemble speci�cations, their semantics, satisfaction
of atomic propositions and model-checking by translation to Promela.

4 HelenaLight

We restrict full Helena speci�cations to some core concepts which leads to
the de�nition of HelenaLight. We �rst formally de�ne the syntax of Hele-
naLight ensemble speci�cations. Afterwards, we introduce an SOS-style seman-
tics for such speci�cations and de�ne satisfaction of LTL formulae.

4.1 Syntax of HelenaLight Ensemble Speci�cations

In HelenaLight, we abstract from the underlying component types of a full
Helena speci�cation and consider only role types, whose instances can be dy-
namically created, and their interactions. Additionally, we omit any notion of
data such that we do not consider attributes and data parameters anymore.

Role Types: Role types are characterized by their name and a set of out-
going and incoming message types. In contrast to full Helena, we omit role
attributes and consider message types with exactly one role parameter.

De�nition 7 (Message Type). A message type msg is of the form
msgnm(rt X) such that msgnm is the name of the message type and X is a
formal parameter of role type rt .

De�nition 8 (Role Type). A role type is a tuple rt = (rtnm, rtmsgsout,
rtmsgsin) such that rtnm is the name of the role type, and rtmsgsout and rtmsgsin
are sets of message types for outgoing and incoming messages supported by rt .2

Ensemble Structures: Ensemble structures specify which role types are
needed for a collaboration. In contrast to full Helena, we omit multiplicities
constraining the number of admissible role instances for each role type. We
assume asynchronous communication and specify for each role type the (positive)
capacity of the input queue of each role instance of that type.

2 In the following, we often write rt synonymously for the role type name rtnm.

8

De�nition 9 (Ensemble Structure). An ensemble structure Σ is a tuple
Σ = (nm, roletypes, roleconstraints) such that nm is the name of the ensemble
structure, roletypes is a set of role types, and for each rt ∈ roletypes,
roleconstraints(rt) is a �nite capacity c > 0 of the input queue of rt .

In this paper, we consider only closed ensemble structures Σ. This means that
any outgoing message of some role type of Σ must occur as an incoming message
of at least one role type of Σ and vice versa, and any parameter type occurring
in a message type is a role type of Σ.

Role Behavior Declarations: Given an ensemble structure Σ, process
expressions (over Σ) will be used to specify role behaviors. They are built from
the process constructs and actions in Def. 10. Opposed to full Helena, we omit
component instances on which role instances are created and any data in message
exchange. Furthermore, we omit the get action, operation calls and any attribute
setters since we do not have attributes in HelenaLight.

De�nition 10 (Process Expression). A process expression is built from the
following grammar, where N is the name of a process, msgnm is the name of a
message type, X and Y are names of variables, rt is a role type (more precisely
the name of a role type), and label is the name of a state label:

P ::= nil (null process)

| a.P (action pre�x)

| P1 + P2 (nondeterministic choice)

| N (process invocation)

a ::= X ← create(rt) (role instance creation)

| Y !msgnm(X) (sending a message)

| ?msgnm(rt X) (receiving a message)

| label (state label)

A receive action ?msgnm(rt X) (and resp. a create action X ← create(rt))
declares and opens the scope for a local variable X of type rt . We assume that
the names of the declared variables are unique within a process expression and
di�erent from self which is a prede�ned variable that can always be used.

De�nition 11 (Well-Formedness of Process Expressions). Let Σ = (nm,
roletypes, roleconstraints) be an ensemble structure. A process expression P is
well-formed for a role type rt ′ ∈ roletypes w.r.t. Σ, if all actions occurring in P
are well-formed for rt ′ w.r.t. Σ. This means:
• For a role instance creation action X ← create(rt): rt ∈ roletypes.

• For a send action Y !msgnm(X),

� the role type rt ′ supports the message type msgnm(rt ′′X ′′) as outgo-
ing message and the variable X is of type rt ′′,3

3 We must distinguish here between the role type rt ′, whose behavior is going to be
de�ned, and the role type rt ′′ used for the parameter.

9

� the role type of the variable Y supports the message type
msgnm(rt ′′X ′′) as incoming message,

� the variables X and Y have been declared before, with the exception
that X can be the special, prede�ned variable self of type rt ′.

• For a receive action ?msgnm(rt X), the role type rt ′ supports the message
type msgnm(rt X) as incoming message.

• State labels are unique within the process expression P .

• State labels are not the �rst action of the process expressions P1 or P2 in
the nondeterministic choice P1 + P2.

Building on process expressions, we can now de�ne role behavior declarations.
Opposed to full Helena, a role behavior declaration can not invoke other pro-
cesses, but can invoke itself recursively.

De�nition 12 (Role Behavior Declaration). Let Σ be an ensemble struc-
ture and rt be a role type in Σ. A role behavior declaration for rt has the form
roleBehavior rt = P where P is a process expression which is well-formed for
rt w.r.t. Σ such that P contains (recursive) process invocations at most for rt .4

Ensemble Speci�cations: An ensemble speci�cation consists, as in fullHe-
lena, of two parts: an ensemble structure and a set of role behavior declarations
for all role types occurring in the ensemble structure.

De�nition 13 (Ensemble speci�cation). An ensemble speci�cation is a pair
EnsSpec = (Σ, behaviors) such that Σ is an ensemble structure and
behaviors is a set of role behavior declarations which contains exactly one decla-
ration roleBehavior rt = P for each role type rt ∈ Σ.

P2P Example: A simpli�ed variant of the p2p example of Sec. 3, written in
HelenaText [13], is shown in Fig. 4. In contrast to the speci�cation in full He-
lena, we omit the underlying component type Peer and all role attributes as well
as data parameters. The ensemble structure names the participating role types
and their capacity, but no multiplicities. HelenaLight also restricts the speci-
�cation of dynamic behavior. Process expressions can only use nondeterministic
choice instead of conditional selection. Thus, in contrast to the router behavior
in full Helena (cf. Fig. 3), the router nondeterministically either provides the
�le or forwards the request (cf. line 16-22 in Fig. 4b).

4.2 Semantics of HelenaLight Ensemble Speci�cations

The semantic domain of ensemble speci�cations are labeled transition systems
describing the evolution of ensembles. Structured operational semantics (SOS)
rules de�ne the allowed transitions. We pursue an incremental approach, similar

4 Note that in the above de�nition we use rt also as a process name for the role
behavior of the role type rt .

10

1 roleType Requester {
2 rolemsg out reqAddr(Requester req);
3 rolemsg in sndAddr(Provider prov);
4 rolemsg out reqFile(Requester req);
5 rolemsg in sndFile(Provider prov);
6 }
7

8 roleType Router {
9 rolemsg in/out reqAddr(Requester req);

10 rolemsg out sndAddr(Provider prov);
11 }
12

13 roleType Provider {
14 rolemsg in reqFile(Requester req)();
15 rolemsg out sndFile(Provider prov);
16 }
17

18 ensembleStructure TransferEnsemble {
19 roleTypes = {<Requester, cap = 2>,
20 <Router, cap = 2>,
21 <Provider, cap = 1>};
22 }

(a) Role types and ensemble structure

1 roleBehavior Requester =
2 router <- create(Router) .
3 router ! reqAddr(self) .
4 ? sndAddr(Provider prov) .
5 prov ! reqFile(self) .
6 ? sndFile(Provider prov2) .
7 stateSndFile . nil
8

9 roleBehavior Provider =
10 ? reqFile(Requester req) .
11 stateReqFile .
12 req ! sndFile(self) . nil
13

14 roleBehavior Router =
15 ? reqAddr(Requester req) .
16 { prov <- create(Provider) .
17 req ! sndAddr(prov) .
18 nil }
19 +
20 { router <- create(Router) .
21 router ! reqAddr(req) .
22 Router }

(b) Role behavior declarations

Fig. 4: The p2p example in HelenaLight

to [9] and [20], by splitting the semantics into two di�erent layers. The �rst
layer describes how a single role behavior evolves according to the constructs for
process expressions of the last section. The second layer builds on the �rst one
by de�ning the evolution of a whole ensemble from the concurrent evolution of
its constituent role instances.

Evolution of Roles: On the �rst level, we do not have any information
about the global state of the whole ensemble (involving all active role instances).
Therefore, we only formalize the progress of a single role behavior given by a
process expression. Fig. 5 de�nes the SOS rules inductively over the structure of
process expressions in Def. 10. Note that the rule for process invocation relies on
a given role behavior declaration. We use the symbol ↪−→ to describe transitions
on this level. Since it does not involve instances and considers just the behavior
of single role types, this level concerns behavioral types.

Evolution of Ensembles: On the next level, we consider global states,
which we call ensemble states, and the concurrent execution of role instances.
For the semantics of an ensemble speci�cation EnsSpec = (Σ, behaviors), we
describe the possible evolutions of ensemble states (for any admissible, initial
ensemble state). An ensemble state captures the set of currently existing role
instances together with their local states. Transitions between those ensemble
states, denoted by the symbol −→, describe the evolution of an ensemble. They
are initiated by the actions for sending and receiving messages, role instance
creation, and state labels. According to the speci�ed capacity of input queues
(for roles in ensemble structures), we use bounded asynchronous communication
for message exchange between role instances, i.e., each role instance has exactly
one (bounded) input queue which receives the messages issued by (other) role
instances and directed to the current one.

11

(action pre�x) a.P
a
↪−→ P

(choice-left)
P1

a
↪−→ P ′1

P1 + P2
a
↪−→ P ′1

(choice-right)
P2

a
↪−→ P ′2

P1 + P2
a
↪−→ P ′2

(process invocation)
Q

a
↪−→ Q′

rt
a
↪−→ Q′

if roleBehavior rt = Q

Fig. 5: SOS rules for the evolution of process expressions in HelenaLight

Let us now look more closely to the formal de�nition of an ensemble state.
Intuitively, an ensemble state describes the local states of all participating roles.
Formally, a local state of a role instance is a tuple (rt , v, q, P) which stores
the following information: the (non modi�able) role type rt of the instance,
a local environment function v mapping local variables to values (the empty
environment is denoted by ∅), the current content q of the input queue of the
instance (the empty queue is denoted by ε, the length of q is denoted by |q|), and
a process expression P representing the current control state of the instance.

We furthermore assume that each role instance has a unique identi�er, repre-
sented by a positive natural number. Hence, an ensemble state representing the
local states of all currently existing role instances is given by a �nite function
σ : N+ → L, such that L is the set of local states explained before. Finiteness
of σ means that there exists n ∈ N, denoted by size(σ), such that σ(i) = ⊥
for all i > n and σ(i) 6= ⊥ for all 0 < i ≤ n.5 The de�nition domain of σ is
denoted by dom(σ). For instance creation, an ensemble state σ is extended by
a new role instance together with its local state by assigning an element λ ∈ L
to the next free identi�er, which is size(σ) + 1 and denoted by next(σ) in the
following. Such an extension is denoted by σ[next(σ)7→λ]. We can also update the
value of an identi�er i < next(σ) with a new value λ which is denoted by σ[i7→λ].
In summary, an ensemble state associates a local state to each currently existing
role instance. Thus, a role instance i is characterized by a unique identi�er and
its associated local state λ ∈ L. In the following, we often write i synonymously
for the role instance identi�er.

For a given ensemble speci�cation EnsSpec = (Σ, behaviors), the allowed
transitions between ensemble states, denoted by −→, are described by the SOS
rules in Fig. 6. For each rule, the transition between two ensemble states is in-
ferred from a transition of process expressions on the type level, denoted by ↪−→
in Fig. 5. The rules concern state changes of existing role instances in accor-
dance to communication actions, the creation of new role instances (which start

5 Here and in the following, we assume that the range of a �nite function is implicitly
extended by the unde�ned value ⊥.

12

execution in the initial state of the behavior of their corresponding role type)
and state label actions. The labels on the transitions of −→ indicate which role
instance i currently executes which action from its role behavior speci�cation.

(send)
Pi

Y !msgnm(X)
↪−−−−−−−−→ P ′i

σ
i:Y !msgnm(X)−−−−−−−−−−→ σ[i7→(rti,vi,qi,P

′
i)][j 7→(rtj ,vj,qj ·msgnm(k),Pj)]

if i ∈ dom(σ), σ(i) = (rti, vi, qi, Pi),

vi(Y) = j ∈ dom(σ), σ(j) = (rtj , vj , qj , Pj),

|qj | < roleconstraints(rtj), vi(X) = k ∈ dom(σ).

(receive)
Pi

?msgnm(rtj X)

↪−−−−−−−−−→ P ′i

σ
i:?msgnm(rtj X)
−−−−−−−−−−−→ σ[i7→(rti,vi[X 7→j],qi,P

′
i)]

if i ∈ dom(σ), σ(i) = (rti, vi,msgnm(j) · qi, Pi),
j ∈ dom(σ), σ(j) = (rtj , vj , qj , Pj).

(create)
Pi

X←create(rtj)

↪−−−−−−−−−−→ P ′i

σ
i:X←create(rtj)−−−−−−−−−−−−→ σ′

if σ
′
= σ[i7→(rti,vi[X 7→next(σ)],qi,P

′
i)][next(σ)7→(rtj ,∅[self 7→next(σ)],ε,Pj)],

i ∈ dom(σ), σ(i) = (rti, vi, qi, Pi), roleBehavior rtj = Pj .

(label)
Pi

label
↪−−→ P ′i

σ
i:label−−−−→ σ[i7→(rti,vi,qi,P

′
i)]

if i ∈ dom(σ), σ(i) = (rti, vi, qi, Pi).

Fig. 6: SOS rules for the evolution of ensembles in HelenaLight

Initial States: An ensemble state σ is an admissible initial state for the
ensemble speci�cation EnsSpec, if for all i ∈ dom(σ), σ(i) = (rt , ∅[self 7→ i], ε, P)
such that P is the process expression used in the declaration of the role behavior
for rt , i.e., EnsSpec contains the declaration roleBehavior rt = P .

Well-De�nedness of Ensemble States: A HelenaLight ensemble state
σ : N+ → L is well-de�ned if for all i ∈ N+ and σ(i) = (rt , v, q, P):

� self ∈ dom(v),

� for any (local) variable X ∈ dom(v): v(X) ∈ dom(σ),

� for q = msgnm1(k1) · . . . ·msgnmm(km): k1, . . . , km ∈ dom(σ),

Well-de�nedness is not a restriction since any admissible initial state is well-
de�ned and the SOS rules of HelenaLight preserve well-de�nedness. This fol-
lows from the syntactic restriction for well-formed role behavior declarations.

Semantics: The rules in Fig. 6 generate, for an ensemble speci�cation EnsSpec
and any admissible initial ensemble state σinit, a labeled transition system
THel = (SHel, IHel, AHel,−→Hel) with IHel = {σinit}.

13

4.3 LTL for HelenaLight

To express goals over HelenaLight ensemble speci�cations, we use a subset
of the LTL formulae de�ned for full Helena in Sec. 3. We omit atomic propo-
sitions involving attributes and only use state label propositions of the form
rt [i]@label where rt is a role type, i ∈ N+ and label is a state label. Therefore,
the set AP (EnsSpec) of all atomic propositions for a HelenaLight ensemble
speci�cation EnsSpec consists of all such state label expressions rt [i]@label . LTL
formulae are built over these propositions as explained in Sec. 3.

An atomic proposition p = rt [i]@label is satis�ed in an ensemble state s,
written s |= p, if there exists a role instance i of type rt whose next performed
action in THel is the state label label . This is well-de�ned since, due to well-
formedness, labels are not allowed as �rst actions in branches. The LTS THel
for a given HelenaLight ensemble speci�cation and an admissible initial en-
semble state together with the above set AP (EnsSpec) of atomic propositions
and the satisfaction relation s |= p induces a Kripke structure which is denoted
by K(THel) (cf. Sec. 2). Following Def. 5, we de�ne satisfaction of LTL in He-
lenaLight as follows: The LTS THel for an ensemble speci�cation EnsSpec and
an admissible initial state satis�es an LTL formulae φ over the set AP (EnsSpec),
written THel |= φ, if K(THel) |= φ.

P2P Example: We reformulate the goal from Sec. 3 to

�(Provider@stateReqF ile⇒ ♦Requester@stateSndFile).6

In HelenaLight, we omit component types and cannot refer to attributes.
Therefore, we express that the �le exists in the network by the provider reaching
its state labeled by stateReqF ile (note that we have added � since this state
label expression does not hold in the initial state). Similarly, we express that the
�le was transferred to the requester by the requester reaching its state labeled
by stateSndFile.

5 PromelaLight

Promela [11] is a language for modeling systems of concurrent processes. Its
most important features are the dynamic creation of processes and support for
synchronous and asynchronous communication via message channels. Promela
veri�cation models serve as input for the model-checker Spin [11]. On the one
hand, Spin can be used to run a randomized simulation of the model. On the
other hand, it can check LTL properties, formulated over a Promela speci�ca-
tion, and �nd and display counterexamples.

To verify LTL properties for Helena speci�cations, we exploit Promela
and Spin. We �rst translate a Helena speci�cation to Promela and then check
the speci�ed LTL properties with Spin. Dynamic role creation in Helena can
easily be expressed by dynamic process creation in Promela, and asynchronous

6 Provider@stateReqF ile and Requester@stateSndFile are shorthand notations
without identi�er which can only be used if there exists at most one instance of
the role type.

14

message exchange between roles in Helena by asynchronous communication
via message channels in Promela. For formally proving the correctness of the
translation, we use HelenaLight and for the target of the translation into
Promela, we use an appropriate sub-language which we call PromelaLight.

5.1 Syntax of PromelaLight Speci�cations

The following syntax is a simpli�ed version of the Promela syntax de�ned
in [20]. The constructs specify a signi�cant sub-language of the Promela de�ni-
tion which is su�cient as a target for the translation of HelenaLight.

PromelaLight Speci�cations: Intuitively, a PromelaLight speci�-
cation consists of a set of process types whose behavior is speci�ed by process
expressions. We �rst de�ne process expressions in PromelaLight based on [20].
We use the same names for nonterminals as in [20], but sometimes we unfold
the original de�nitions to get a smaller grammar for our purposes. In contrast
to [20], we added the Promela expression skip as an explicit construct (cor-
responding to nil in HelenaLight). Furthermore, the conditional statement
and the goto statement are not treated as process steps, but as a processes
itself. Consequently, gotos can only occur at the end of a process expression.
We have also removed guards from the conditional statements, thus obtaining
nondeterministic choice.

De�nition 14 (Process Expressions). A process expression seq is built from
the following grammar, where label is the name of a state label (used for gotos
and veri�cation), var , var1, and var2 are names of variables, const is a constant,
pt is the name of a process type, and typelist is a comma-separated list of types:

seq ::= skip (empty process)

| step; seq (sequential composition)

| if :: seq1 :: seq2 � (nondeterministic choice)

| goto label (goto)

step ::= label : true (state label)

| var1!const , var2 (send)

| var1?const , var2 (receive)

| run pt(var) (run)

| chan var (channel declaration)

| chan var = [const] of {typelist} (channel declaration with initialization)

Note that send and receive steps always concern data tuples const , var2 con-
sisting of a constant and a variable. A channel declaration chan var = . . . opens
the scope for a local channel variable var . We assume that the names of the de-
clared variables are unique within a process expression and di�erent from self ,
which is a prede�ned variable of type chan that can always be used. A variable
is initialized if either the variable occurs in a receive step as var2 or in a channel
declaration with initialization as var or is the special variable self .

15

De�nition 15 (Well-Formedness of Process Expressions). A process ex-
pression is well-formed if (1) all variables occurring in a send or run step have
been initialized before, (2) the variable var1 in a receive step has been initialized
before and the variable var2 has been declared before, and (3) label : true is not
the �rst statement in seq1 or seq2 in if :: seq1 :: seq2 �.

Process expressions are used to de�ne process types. In PromelaLight, a
process type has always one parameter self of type chan which represents a
distinguished input channel for each process instance.

De�nition 16 (Process Type Declaration). A process type declaration has
the form proctype pt(chan self){startpt : true; seq} where pt is the name of
the process type, seq is a well-formed process expression not containing a state
label startpt : true, and any goto expression occurring in seq has the form
goto startpt .

The above de�nition associates a process expression to a process type pt . It
allows a restricted version of recursion by introducing the state label startpt :
true at the beginning of the process and allowing to jump back to that via
goto startpt . This syntactic restriction simpli�es the semantics since the contin-
uation of a goto is then uniquely determined. Hence, we do not need to carry
the full body of a process type declaration in the semantic states and to search
for labels in the body to �nd the continuation as in [20].

De�nition 17 (PromelaLight speci�cation). A PromelaLight speci-
�cation consists of a set of process type declarations.

P2P Example: The formal translation from HelenaLight to Promela-
Light will be discussed in Sec. 7. To illustrate PromelaLight, we already
present here, in Fig. 7, the PromelaLight translation of the simpli�ed variant
of the p2p example. Let us brie�y look at the process type declaration for a
router in Fig. 7b in comparison to the role behavior declaration in Fig. 4b. Non-
deterministic choice is expressed by the if construct of PromelaLight. Role
instance creation in HelenaLight is translated to starting a new process in
PromelaLight (line 10 and 15 in Fig. 4b). Asynchronous message exchange is
obtained by passing an asynchronous channel to the newly created process for
communication (line 9 and 14 in Fig. 4b).

5.2 Semantics of PromelaLight Speci�cations

The semantic domain of PromelaLight speci�cations are again labeled transi-
tion systems. We also follow a two-level SOS approach which has been advocated
for the formal Promela semantics in [20]. On the �rst level, the SOS rules only
deal with the progress of process expressions speci�ed by the nonterminal symbol
seq in Def. 14. Process instances and their concurrent execution are considered
on the second level.

Evolution of Process Expressions: On the �rst level, we only formalize
the progress determined by a single process expression. Fig. 8 de�nes the SOS

16

1 mtype { reqAddr, sndAddr,
2 reqFile, sndFile }
3 proctype Requester(chan self) {
4 startRequester: true;
5 chan router = [2] of { mtype, chan };
6 run Router(router);
7 router!reqAddr,self;
8 chan prov;
9 self?sndAddr,prov;

10 prov!reqFile,self;
11 chan prov2;
12 self?sndFile,prov2;
13 stateSndFile: true;
14 skip
15 }
16 proctype Provider(chan self) {
17 startProvider: true;
18 chan req;
19 self?reqFile,req;
20 stateReqFile: true;
21 req!sndFile,self;
22 skip
23 }

(a) Message de�nitions and process type
declarations for Requester and Provider

1 proctype Router(chan self) {
2 startRouter: true;
3

4 chan req;
5 self?reqAddr,req;
6

7 if
8 ::
9 chan prov = [1] of { mtype, chan };

10 run Provider(prov);
11 req!sndAddr,prov;
12 skip
13 ::
14 chan router = [2] of { mtype, chan };
15 run Router(router);
16 router!reqAddr,req;
17 goto startRouter
18 fi
19 }
20 init {
21 chan req = [2] of { mtype, chan };
22 run Requester(req);
23 }

(b) Process type declaration for Router

Fig. 7: The p2p example in PromelaLight

rules inductively over the structure of PromelaLight process expressions in
Def. 14 where the symbol ↪−→ describes transitions on this level. In contrast
to [20], we postpone not only the treatment of process instances, but also the
treatment of local environments and the consideration of channel instances to
the second level.

(sequential composition) step; seq
step
↪−−→ seq

(choice-left)
seq1

step
↪−−→ seq′1

if :: seq1 :: seq2 �
step
↪−−→ seq′1

(choice-right)
seq2

step
↪−−→ seq′2

if :: seq1 :: seq2 �
step
↪−−→ seq′2

(goto) goto startpt
goto startpt
↪−−−−−−−−→ startpt : true; seq

if proctype pt(chan self){startpt : true; seq}

Fig. 8: SOS rules for the evolution of a process expression in PromelaLight

Evolution of Concurrent Process Instances: On the next level, we con-
sider global states and the concurrent execution of process instances. Similarly
to ensemble states in HelenaLight, a global state in PromelaLight captures
the currently existing process instances. However, in contrast to input queues

17

in HelenaLight, process instances communicate via channels which are not
owned by a local process, but belong to the global state. Hence, a global state
of a PromelaLight speci�cation captures (1) the set of the currently existing
channel instances (together with their states) and (2) the set of the currently
existing process instances (together with their local states). Transitions between
global states are initiated by the actions for sending and receiving a message,
running a new process, channel declarations, gotos, and state labels.

Let us now look more closely to the formal de�nition of a global state in
PromelaLight. Intuitively, a global state describes the local states of all cur-
rently existing channels and the local states of all currently existing process
instances. Each channel instance is uniquely identi�ed by a positive natural
number and the currently existing channel instances are represented by a �nite
function (called channel function) ch : N+ → C such that C is the set of local
channel states. A local state of a channel is a tuple (T, ω, κ) consisting of the
(non-modi�able) type T of entries, the content ω which is a word of T -values
(we write ε for the empty word), and the (non-modi�able) capacity κ > 0 of
the channel7. Similarly, each process instance is uniquely identi�ed by a positive
natural number8, and the currently existing process instances are represented by
a �nite function proc : N+ → P such that P is the set of local process (instance)
states. A local state of a process instance is a tuple (pt , β, π) where pt is the
process type of the instance, β is a local environment function mapping local
variables to values (i.e., channel identi�ers or null) and π is a process expression
representing the current control state of the instance. Finally, a global state is
a pair (ch, proc) of a channel function ch and a function proc representing the
currently existing process instances.9

For a given PromelaLight speci�cation, the allowed transitions between
global states, denoted by −→, are described by the SOS rules in Fig. 9. They
evolve a set of process instances which execute in accordance with their process
types under the assumption of asynchronous communication. For each rule, the
transition between two global states is inferred from a transition of process ex-
pressions on the type level, denoted by ↪−→ in Fig. 8. The labels on the transitions
of −→ indicate which process instance i currently executes which step from its
process type speci�cation. In the rules, we use the shorthand notations for the
extension and update of �nite functions from Sec. 4.2.

Initial States: A global state (ch, proc) is an admissible initial state for a
PromelaLight speci�cation, if

� for all c ∈ dom(ch): ch(c) = (T, ε, κ) for some T and κ,

� for all i ∈ dom(proc): proc(i) = (pt , ∅[self 7→ ci], startpt : true; seq) such
that ci ∈ dom(ch) with ci 6= cj for i 6= j and the PromelaLight speci�ca-
tion contains the process type declaration proctype pt(chan self){startpt :
true; seq}.

7 In PromelaLight, we only consider asynchronous communication (κ > 0).
8 For technical reasons, explained in the discussion of initial states below, we deviate
from [20] and do not use 0 as an identi�er for channels and processes.

9 In [20], ch is denoted by C, proc by act, and β by L.

18

(goto)
πi

goto label
↪−−−−−−→ π′i

(ch, proc)
i:goto label−−−−−−−−→ (ch, proc[i7→(pti,βi,π

′
i)])

if i ∈ dom(proc), proc(i) = (pti, βi, πi).

(label)
πi

label:true
↪−−−−−−→ π′i

(ch, proc)
i:label:true−−−−−−−→ (ch, proc[i7→(pti,βi,π

′
i)])

if i ∈ dom(proc), proc(i) = (pti, βi, πi).

(send)
πi

var1!const,var2
↪−−−−−−−−−−→ π′i

(ch, proc)
i:var1!const,var2−−−−−−−−−−−→ (ch[c 7→(T,ω·(const,v),κ)], proc[i7→(pti,βi,π

′
i)])

if i ∈ dom(proc), proc(i) = (pti, βi, πi), βi(var2) = v ∈ dom(ch),

βi(var1) = c ∈ dom(ch), ch(c) = (T, ω, κ), |ω| < κ.

(receive)
πi

var1?const,var2
↪−−−−−−−−−−→ π′i

(ch, proc)
i:var1?const,var2−−−−−−−−−−−→ (ch[c 7→(T,ω,κ)], proc[i7→(pti,βi[var2 7→v],π

′
i)])

if i ∈ dom(proc), proc(i) = (pti, βi, πi), var2 ∈ dom(βi),

βi(var1) = c ∈ dom(ch), ch(c) = (T, (const, v) · ω, κ), v ∈ dom(ch).

(run)
πi

run ptj(var)

↪−−−−−−−−→ π′i

(ch, proc)
i:run ptj(var)−−−−−−−−−−→ γ′

if γ
′
= (ch, proc[i7→(pti,βi,π

′
i)][next(proc)7→(ptj ,∅[self 7→c],startptj :true;seq)])

i ∈ dom(proc), proc(i) = (pti, βi, πi), βi(var) = c ∈ dom(ch),

proctype ptj(chan self){startptj : true; seq}.

(chan-1)
πi

chan var
↪−−−−−−→ π′i

(ch, proc)
i:chan var−−−−−−−→ (ch, proc[i7→(pti,βi[var 7→null],π′i)])

if i ∈ dom(proc), proc(i) = (pti, βi, πi)

(chan-2)
πi

chan var=[const] of {typelist}
↪−−−−−−−−−−−−−−−−−−−−−→ π′i

(ch, proc)
i:chan var=...−−−−−−−−−−→ γ′

if γ
′
= (ch[next(ch)7→(typelist,ε,const)], proc[i7→(pti,βi[var 7→next(ch)],π′i)])

i ∈ dom(proc), proc(i) = (pti, βi, πi).

Fig. 9: SOS rules for the evolution of concurrent process instances.

Concrete initial states in PromelaLight are constructed by running an
appropriate initialization as shown in line 20-23 of Fig. 7b where one channel and
one requester instance, using that channel as input, are created. The initialization
is executed by a root process init which implicitly obtains the identi�er 0.
However, we do not consider this process in a PromelaLight speci�cation and
are not interested in the veri�cation of properties for the root process (which
anyway does not have any counterpart in a Helena speci�cation). Thus, we

19

use in our semantic framework and in atomic propositions of LTL formulae only
positive natural numbers for process identi�ers.

Well-De�nedness of Global States: A global PromelaLight state γ =
(ch, proc) with ch : N+ → C and proc : N+ → P is well-de�ned if for all i ∈ N+,
ch(i) = (T, ω, κ) and proc(i) = (pt , β, π):

� β(self) ∈ dom(ch),
� for any (local) variable X ∈ dom(β): β(X) ∈ dom(ch) ∪ {null},
� for ω = (msgnm1, c1) · . . . ·(msgnmm, cm): c1, . . . , cm ∈ dom(ch) and κ ≥ m.

Semantics: As for HelenaLight, the rules in Fig. 9 generate, for a Prome-
laLight speci�cation and any admissible initial state γinit, a labeled transition
system TPrm = (SPrm, IPrm, APrm,−→Prm) with IPrm = {γinit}.

5.3 LTL for PromelaLight

To express goals over PromelaLight speci�cations, we use LTL formulae. As in
HelenaLight, we restrict the atomic propositions of LTL formulae to state label
expressions of the form pt [i]@label where pt is a process type, i ∈ N+ and label
is a state label. Therefore, the set AP (PrmSpec) of all atomic propositions for a
PromelaLight speci�cation PrmSpec consists of all such state label expressions
pt [i]@label . LTL formulae are built over these propositions as explained in Sec. 3.

An atomic proposition p = pt [i]@label is satis�ed in a global state γ, writ-
ten γ |= p if there exists a process instance i of type pt whose next performed
action in TPrm is the state label label . The LTS TPrm for a given Promela-

Light speci�cation and an admissible initial state together with the above set
AP (PrmSpec) of atomic propositions and the satisfaction relation γ |= p induces
a Kripke structure denoted by K(TPrm) (cf. Sec. 2). Following Def. 5, we de�ne
satisfaction of LTL in PromelaLight as follows: The LTS TPrm for a Prome-
laLight speci�cation PrmSpec and an admissible initial state satis�es an LTL
formulae φ over the set AP (PrmSpec), written TPrm |= φ, if K(TPrm) |= φ.

6 Translation of HelenaLight to PromelaLight

In this section, we propose a transformation from HelenaLight ensemble spec-
i�cations to PromelaLight veri�cation models. We assume given a Hele-

naLight ensemble speci�cation EnsSpec = (Σ, behaviors) with Σ = (nm,
roletypes, roleconstraints) being an ensemble structure. The translation into the
PromelaLight speci�cation trans(EnsSpec) proceeds in two steps: First, we
provide all message types from HelenaLight in PromelaLight by declaring
an enumeration type, called mtype (not shown here).

Translation of Role Behavior Declarations: Then, for each role type
and its corresponding role behavior in HelenaLight, we create a process type
in PromelaLight which re�ects the execution of the role behavior and is in-
ductively de�ned over the structure of process expressions and actions.

20

transdecl(roleBehavior rt=P) = proctype rt(chan self) {
startrt : true; transproc(P) }

transproc(nil) = skip

transproc(a.P) = transact(a); transproc(P)

transproc(P1 + P2) = if :: transproc(P1) :: transproc(P2)�

transproc(N) = goto startN

transact(Y !msgnm(X)) = Y !msgnm, X

transact(?msgnm(rt X)) = chan X; self?msgnm, X

transact(X ← create(rt)) = chan X = [roleconstraints(rt)] of {mtype,chan};
run rt(X)

transact(label) = label : true

if label 6= startrt

As an example, we consider the HelenaLight speci�cation in Fig. 4 which
is translated with the above rules to the PromelaLight speci�cation in Fig. 7.

Translation of Initial States: To be able to show semantic equivalence be-
tween HelenaLight and PromelaLight speci�cations, we have to translate
admissible initial states. We assume given an admissible initial HelenaLight
ensemble state σ with local states σ(i) = (rt , ∅[self 7→ i], ε, P) for all i ∈ dom(σ).
Its translation is the admissible initial PromelaLight state trans init(σ) =
(ch, proc), such that the content of all existing channels in ch is empty,
dom(proc) = dom(σ), and for all i ∈ dom(proc), proc(i) = (rt , ∅[self 7→
ci], startrt : true; transproc(P)) with ci ∈ dom(ch) and ci 6= cj for i 6= j.

7 ≈-Stutter Equivalence of the Translation

We now prove the correctness of the translation from HelenaLight to Prome-
laLight, i.e., that a HelenaLight speci�cation and its PromelaLight trans-
lation satisfy the same set of LTL\X formulae. We �rst de�ne two relations ∼
and ≈ between the Kripke structures induced from a HelenaLight speci�ca-
tion and its PromelaLight translation. To be able to apply Thm. 1 from Sec. 2,
we show that ≈ preserves satisfaction of atomic propositions and any admissible
initial state of a HelenaLight ensemble speci�cation and its PromelaLight
translation are related by ∼. Furthermore, we prove that the relation ∼ is a ≈-
stutter simulation of the Kripke structure of the HelenaLight speci�cation by
the Kripke structure of the PromelaLight translation and the inverse relation
≈−1 is a ≈−1-stutter simulation in the other direction. Having proven stutter
trace equivalence, we can then apply Thm. 2 entailing preservation of LTL\X.

Silent Actions: To prove stutter trace equivalence of Kripke structures, we
rely on the transitions in the labeled transition systems which induce the Kripke
structures. Thereby, some transitions in HelenaLight are re�ected by several
transitions in PromelaLight, e.g., the transition with the action ?msgnm(X)
is re�ected by two transitions with the actions chan X and self?msgnm, X
(cf. de�nition of transact in Sec. 6). These additional transitions do not change

21

satisfaction of atomic propositions. Thus, we consider the following steps and
their corresponding actions in PromelaLight as silent and denote them by τ :

� the transition from chan X; self?msgnm, X to self?msgnm, X,
� the transition from chan X = [roleconstraints(rt)] of {mtype,chan}; run rt(X)

to run rt(X),
� the transition startpt i : true;π to π since start state labels startpt i : true

only exist in PromelaLight, and
� the transition goto startpt i ;π to π since in PromelaLight, recursive pro-

cess invocation is expressed by a jump (i.e., a goto step) while in Hele-

naLight, the body of the invoked role behavior is directly applied without
any execution step for recursion.

Simulation Relations:We de�ne two relations which both express a corre-
spondence between HelenaLight ensemble states and global PromelaLight
states, but require a di�erent level of correspondence.

De�nition 18 (Relation ∼ and ≈). Let K(THel) = (SHel, IHel,−→•Hel, FHel)
be the induced Kripke structure of a HelenaLight ensemble speci�cation and
K(TPrm) = (SPrm, IPrm,−→•Prm, FPrm) be the induced Kripke structure of a
PromelaLight speci�cation. The relation ∼ ⊆ SHel × SPrm is de�ned as fol-
lows: σ ∼ (ch, proc) if it holds that

1. dom(σ) = dom(proc) and
2. for all i ∈ dom(σ) with σ(i) = (rt i, vi, qi, Pi) and proc(i) = (pt i, βi, πi):

(a) rt i = pt i,
(b) dom(vi) ⊆ dom(βi) such that for all X ∈ dom(vi):

vi(X) = j ⇔ βi(X) = βj(self) (where proc(j) = (ptj , βj , πj)),
(c) qi = msgnm1(k1) · . . . ·msgnmm(km) ⇔

ch(βi(self)) = (T, (msgnm1, βk1(self)) · . . . · (msgnmm, βkm(self)), κ),

(d) transproc(Pi) = πi or πi
startpti :true
↪−−−−−−−→Prm transproc(Pi).

The relation ≈ ⊆ SHel×SPrm is de�ned just as the relation ∼ with the exception

of item (2d) where transproc(Pi) = πi is replaced by transproc(Pi)
τ∗

↪−→Prm πi.
Obviously, it holds that ∼ ⊆ ≈.

Firstly, in the de�ned relations, there must be as many role instances in
HelenaLight as process instances in PromelaLight. Secondly, the local state
of each role instance i must be related to the local state of the process instance
with the same identi�er i: (a) The role type rt i must match the process type
pt i. (b) The local variables in vi must have counterparts in βi, but note that the
value types of HelenaLight and PromelaLight are subtly di�erent. A local
variable in HelenaLight points to a role instance whereas a local variable in
PromelaLight points to a channel. Furthermore, note that vice versa, there
might be local variables in βi which do not have any counterparts in vi. (c) The
content of the input queue of the role instance must match the content of the
corresponding channel of the process instance. As for local variables, the input

22

queue of the role instance consists of role instance identi�ers whereas the related
PromelaLight input channel contains the identi�ers of the input channels of
the process instances (corresponding to these role instances). (d) For the process
expression πi occurring in the local state of the process instance, we either require
that it is the same as the translation of the process expression Pi occurring in
the local state of the role instance or that it can evolve by the single action
startpt i : true to the translation of Pi. The latter takes into account that the
translation of a role behavior into PromelaLight adds a start label at the
beginning of the translated role behavior. For the relation ≈, we weaken the
�rst condition such that πi must only be reachable by evolving the translation
of Pi with arbitrary many τ actions.

Properties of the Simulation Relations: Based on the induced Kripke
structures, we show some interesting properties of the two relations: the relation
≈ preserves satisfaction of atomic propositions and any admissible initial state in
HelenaLight and its PromelaLight translation are related by the relation ∼.

Lemma 1 (Preservation of Atomic Propositions). Let K(THel) = (SHel,
IHel,−→•Hel, FHel) be an induced Kripke structure of a HelenaLight ensemble
speci�cation EnsSpec = (Σ, behaviors) such that no role behavior in behaviors
starts with a state label and let K(TPrm) = (SPrm, IPrm,−→•Prm, FPrm) be the
induced Kripke structure of a PromelaLight speci�cation.

For all σ ∈ SHel, γ ∈ SPrm, if σ ≈ γ, then FHel(σ) = FPrm(γ).

Proof. A HelenaLight state σ satis�es an atomic proposition p = rt [i]@label
only if there exists a role instance i of type rt whose next performed action is the
state label label ; similarly, γ satis�es p only if there exists a process instance i of
type rt whose next performed action is the state label label . In any other case
p is not satis�ed. For each such proposition p, the proof proceeds by induction
on the depth of the derivation of the next action of the process expression for
role instance i. The �rst interesting case in the induction is nondeterministic
choice. In both, HelenaLight and PromelaLight, labels are not allowed as
�rst actions in a branch such that the nondeterministic choice and each branch
separately do not satisfy any atomic proposition p. Therefore, the induction
step is trivial. Another interesting case is process invocation. HelenaLight
executes directly the �rst action of its role behavior. On the other hand, in
PromelaLight process invocation is realized by a goto jump followed by the
start label and the �rst action of the (translated) role behavior. These steps
(trivially) preserve satisfaction of atomic propositions since start labels are not
allowed as atomic propositions and since the �rst action of a role behavior cannot
be a state label. ut

Lemma 2 (Relationship between Initial States). Let σ be an admissible
initial state of a HelenaLight ensemble speci�cation, then σ ∼ trans init(σ).

Proof. In HelenaLight, an admissible initial state σ consists of local states
σ(i) = (rt , ∅[self 7→ i], ε, P) (cf. de�nition of admissible initial states in Sec. 4.2).

23

For the PromelaLight translation holds trans init(σ) = (ch, proc); the con-
tent of all existing channels in ch is empty, dom(proc) = dom(σ), and for all
i ∈ dom(proc), we have proc(i) = (rt , ∅[self 7→ ci], startrt : true; transproc(P))
with ci ∈ dom(ch) (cf. de�nition of trans init in Sec. 6). Therefore, all condi-
tions for σ ∼ trans init(σ) are satis�ed, in particular item (2d) is satis�ed since

startrt : true; transproc(P)
startrt :true
↪−−−−−−−→Prm transproc(Pi). ut

Stutter Simulations: Based on the previous two lemmata, we move on to
show that the relation ∼ is a ≈-stutter simulation of a HelenaLight speci-
�cation by its PromelaLight translation and that the inverse relation ≈−1
itself is a ≈−1-stutter simulation in the other direction. Note that ≈ itself would
not preserve the branching structure of K(THel) (due to branching with silent
actions in PromelaLight), but the coarser relation ∼ does.

Proposition 1 (Stutter Simulation of HelenaLight Speci�cations).
Let K(THel) and K(TPrm) be the induced Kripke structures of a HelenaLight

ensemble speci�cation and of its PromelaLight translation trans(EnsSpec) as
in Lemma 1. Then, ∼ is a ≈-stutter simulation of KHel by KPrm.

Proof. With Lemma 2, we proved that any initial state of a HelenaLight spec-
i�cation and its PromelaLight translation are in the relation ∼. It remains to
show that the relation ∼ ful�lls the property of a ≈-stutter simulation described
in Def. 6. In the proof, we rely on the underlying labeled transition systems
THel and TPrm of the Kripke structures K(THel) and K(TPrm). To re�ect labels
of HelenaLight in PromelaLight, we introduce a notation which translates
a HelenaLight label to its corresponding PromelaLight label by omitting
silent actions:

trans label(i : Y !msgnm(X)) = i : Y !msgnm, X

trans label(i :?msgnm(rtj X)) = i : self?msgnm, X

trans label(i : X ← create(rtj)) = i : run rtj(X)

trans label(i : label) = i : label : true

By relying on that notation, we show the following property which entails the
required property for a ≈-stutter simulation:

For all σ ∈ SHel, γ ∈ SPrm with σ ∼ γ, if σ a−→Hel σ
′,

then there exists γ
τ−→Prm γ1 . . .

τ−→Prm γn
translabel(a)−−−−−−−−→Prm γ

′ (n ≥ 0)
such that σ ≈ γk for all k ∈ {1, . . . , n}, and σ′ ∼ γ′.

The proof proceeds by induction on the depth of the derivation of σ
a−→Hel

σ′. The induction relies on the following fact: Each action a in HelenaLight

is re�ected in PromelaLight, but some internal steps might be necessary in
PromelaLight before the corresponding action trans label(a) can actually be
executed, e.g., message reception with the action i : ?msgnm(rtj X) is translated
to two actions i : chan X and i : self?msgnm, X or process invocation in
PromelaLight uses �rst a goto step and then a start label step to reach the

24

beginning of the (translated) role behavior. Since the relation ≈ just requires
that the translation of the HelenaLight process expression P for role instance
i can evolve by τ actions to the PromelaLight process expression π for the
corresponding process instance i, all those intermediate steps result in states
remaining in the relation ≈. Only the translated action trans label(a) evolves the
PromelaLight translation according to the evolution of the HelenaLight
speci�cation such that the resulting states are again in the relation ∼. ut

In the other direction, the inverse relation ≈−1 serves as ≈−1-stutter simulation.

Proposition 2 (Stutter Simulation of PromelaLight Translations).
Let K(THel) and K(TPrm) be the induced Kripke structures of a HelenaLight

ensemble speci�cation and of its PromelaLight translation trans(EnsSpec) as
in Lemma 1. Then, ≈−1 is a ≈−1-stutter simulation of KPrm by KHel.

Proof. We rely on Lemma 2 as before. The proof that the relation ≈−1 satis�es
the property for a ≈−1-stutter simulation is based, as before, on the underlying
labeled transition systems. We show the following property which entails the
required property for a ≈−1-stutter simulation:

For all γ ∈ SPrm, σ ∈ SHel with γ ≈−1 σ, if γ
b−→Prm γ

′,
then γ′ ≈−1 σ if b = τ or there exists σ

a−→Hel σ
′ if b 6= τ

such that trans label(a) = b and γ′ ≈−1 σ′.

The proof proceeds by induction on the depth of the derivation of γ
b−→Prm γ

′.
The induction relies on the following fact: Silent actions in PromelaLight, de-
noted by τ might only change the value of local variables which are not yet in
relation to HelenaLight, i.e., silent steps preserve the relationship according
to ≈−1. For all non-silent actions, the relation ≈−1 is su�cient to transfer ex-
ecutability of a PromelaLight action b to its corresponding HelenaLight

action a with trans label(a) = b such that ≈−1 is again established by the transi-
tion. ut

Lemma 1, Prop. 1, and Prop. 2 allow us to infer, by Thm. 1, that the induced
Kripke structures of a HelenaLight ensemble speci�cation and its Promela-
Light translation are stutter trace equivalent. Thus, we can apply Thm. 2 to
show that the both labeled transitions systems satisfy the same LTL\X formulae.

Theorem 3 (HelenaLight LTL\X Preservation). Let THel be the la-
beled transition system of a HelenaLight ensemble speci�cation EnsSpec =
(Σ, behaviors) together with an admissible initial state such that no role behav-
ior in behaviors starts with a state label. Let TPrm be the labeled transition system
of its PromelaLight translation trans(EnsSpec).

For any LTL\X formula φ over AP (EnsSpec), THel |= φ⇔ TPrm |= φ.

25

8 Model-Checking HelenaLight with Spin

The results from the previous sections allow us to verify LTL properties for
a HelenaLight ensemble speci�cation by model-checking its PromelaLight
translation in Spin. However, the semantics of HelenaLight and therefore sat-
isfaction of LTL formulae is de�ned relatively to a given initial state σinit. Thus,
when model-checking the corresponding PromelaLight translation, we have
to establish the corresponding initial state trans init(σinit) in PromelaLight

and verify properties relatively to this initial state. We setup the initial state
in a dedicated init-process (cf. Fig. 7). To re�ect satisfaction of LTL formu-
lae relatively to this initial state, we further extend the original HelenaLight
LTL formula φ to �(init⇒ φ). The init is thereby a property which only holds
when the initialization in PromelaLight according to the given initial state in
HelenaLight was �nished.

P2P Example: Respecting the aforementioned adaptations to LTL formu-
lae, the goal for our p2p example in Sec. 4.3 is translated to

� (Requester@startRequester ⇒
�(Provider@stateReqF ile⇒ ♦Requester@stateSndFile)).

If we restrict the number of routers, this property holds for the Promela-
Light translation in Fig. 7 and we can therefore conclude that it also holds
for the HelenaLight ensemble speci�cation in Sec. 4.1 for the initial state
where only one requester exists. To model-check the more interesting goal from
Sec. 3, we have to extend the translation to full Helena by supporting two
additional features, data and components, which adopt roles. In [12], we report
the extended translation and argue that stutter trace equivalence holds for this
extension as well. Furthermore, we present an automatic code generator based
on the Xtext workbench of Eclipse which takes a Helena ensemble speci�-
cation written in HelenaText, our domain speci�c language [13] for Helena
ensembles, as input and generates the Promela translation as output.

9 Conclusion

Helena speci�cations provide models for dynamically evolving ensembles. This
paper deals with a missing link in the Helena development methodology con-
cerning the early veri�cation of ensemble speci�cations against goals described
by LTL formulae. For this purpose, we proposed to translate Helena ensem-
ble speci�cations into Promela which can be checked with Spin. To prove the
correctness of the translation, we have (a) de�ned an SOS semantics for simpler
variants of Helena and Promela and (b) shown that both are stutter trace
equivalent. Hence, LTL formulae (without next) are preserved; cf. [1].

Our approach of veri�cation is in-line with goal-oriented requirements ap-
proaches like KAOS [17]. They also specify goals by LTL properties. However,
they translate their system speci�cations into the process algebra FSP [18],
which is not su�cient to represent the dynamics of ensembles since dynamic

26

process creation and directed communication are not supported. Techniques for
the development of ensembles have been thoroughly studied in the recent AS-
CENS project [21]: In [5], ensemble-based systems are described by simpli�ed
SCEL programs and translated to Promela. However, the translation is nei-
ther proved semantically correct nor automated. DFINDER [4] implements e�-
cient strategies exploiting compositional veri�cation of invariants to prove safety
properties for BIP ensemble models, but does not deal with dynamic creation of
components. DEECo ensemble models [3] are implemented with the Java frame-
work jDEECo and veri�ed with Java Path�nder [4]. Thus, opposed to Helena,
they do not need any translation. However, since DEECo relies on knowledge
exchange rather than message passing, they do not verify communication behav-
iors. Finally, we would like to point out, that our approach has been strongly
inspired by the way how the distributed language KLAIM has been transferred
to Maude in [7]. There, the correctness of the translation was established by a
stutter bisimulation which preserves CTL∗ properties (without next). The trans-
lation of Helena into Promela is, however, not stutter bisimilar but stutter
trace equivalent and thus only preserves LTL formulae (without next).

For future work, we plan to conduct more experiments to examine the power
of our veri�cation approach. For instance, the question arises how big ensembles
can get in terms of role instances to still provide results in reasonable time. For
model-checking full Helena, it is also interesting what impact the topology of
the underlying component network (e.g., ring structure, graph structure, etc.)
has on the veri�cation of goals for ensemble speci�cations. As a larger case study,
we are currently investigating the power of our veri�cation method for the science
cloud platform, a voluntary peer-to-peer cloud computing platform, which was
modeled in Helena in [15].

References

1. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
2. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling

Language? In: Recent Trends in Algebraic Development Techniques. LNCS, vol.
5486, pp. 71�87. Springer (2008)

3. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The
Invariant Re�nement Method. In: Software Engineering for Collective Autonomic
Systems, LNCS, vol. 8998. Springer (2015)

4. Combaz, J., Bensalem, S., Kofron, J.: Correctness of Service Components and
Service Component Ensembles. In: Software Engineering for Collective Autonomic
Systems, LNCS, vol. 8998. Springer (2015)

5. De Nicola, R., Lluch-Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and Verifying Component Ensembles. In: From Pro-
grams to Systems. LNCS, vol. 8415, pp. 69�83. Springer (2014)

6. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable Avail-
ability under Denial of Service Attacks through Formal Patterns. In: Fundamental
Approaches to Software Engineering. LNCS, vol. 7212, pp. 78�93. Springer (2012)

7. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Semantics, Distributed
Implementation, and Formal Analysis of KLAIM models in Maude. Science of
Computer Programming 99, 24�74 (2015)

27

8. Goguen, J.A., Meseguer, J.: Universal Realization, Persistent Interconnection and
Implementation of Abstract Modules. In: Proc. of the Colloquium of Automata,
Languages and Programming. LNCS, vol. 140, pp. 265�281. Springer (1982)

9. Havelund, K., Larsen, K.G.: The Fork Calculus. In: Proc. of the Colloquium of
Automata, Languages and Programming. LNCS, vol. 700, pp. 544�557. Springer
(1993)

10. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling - The Helena Ap-
proach. In: Speci�cation, Algebra, and Software. LNCS, vol. 8373, pp. 359�381.
Springer (2014)

11. Holzmann, G.: The Spin Model Checker. Addison-Wesley (2003)
12. Klarl, A.: From Helena Ensemble Speci�cations to Promela Veri�cation Models.

Tech. rep., LMU Munich (2015), http://goo.gl/G0sU6U
13. Klarl, A., Cichella, L., Hennicker, R.: From Helena Ensemble Speci�cations to

Executable Code. In: Formal Aspects of Component Software. LNCS, vol. 8997,
pp. 183�190. Springer (2015)

14. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving
Ensembles with the Helena Framework. In: Proc. of the Australasian Software
Engineering Conference. pp. 15�24. IEEE (2014)

15. Klarl, A., Mayer, P., Hennicker, R.: Helena@Work: Modeling the Science Cloud
Platform. In: Leveraging Applications of Formal Methods, Veri�cation and Vali-
dation. LNCS, vol. 8802, pp. 99�116. Springer (2014)

16. Lamport, L.: What Good is Temporal Logic? In: IFIP 9th World Congress. pp.
657�668 (1983)

17. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Speci�cations. Wiley (2009)

18. Magee, J., Kramer, J.: Concurrency-State Models and Java Programs. Wiley (2006)
19. Meseguer, J., Palomino, M., Martí-Oliet, N.: Algebraic Simulations. Journal of

Logic and Algebraic Programming 79(2), 103�143 (2010)
20. Weise, C.: An Incremental Formal Semantics for PROMELA. In: Third SPIN

Workshop (1997)
21. Wirsing, M., Hölzl, M., Koch, N., Mayer, P.: Software Engineering for Collective

Autonomic Systems, LNCS, vol. 8998. Springer (2015)
22. Wirsing, M., Knapp, A.: A Formal Approach to Object-Oriented Software Engi-

neering. Electrical Notes on Theoretical Computer Science 4, 322�360 (1996)

28

http://goo.gl/G0sU6U

	Model-Checking Helena Ensembles with Spin

