
Int J Software Informatics, Vol.xx, No.xx, January 2015, pp. 1–27 E-mail: ijsi@iscas.ac.cn
International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org
c©2015 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

An Ontology for Secure Web Applications

Marianne Busch and Martin Wirsing

{busch, wirsing}@pst.ifi.lmu.de

Ludwig-Maximilians-Universität München, Germany

Dedicated to Bernd Krieg-Brückner

Abstract It is commonly known that most applications suffer from security holes that

are sooner or later exploited. One reason is that for developers the term “security” is difficult

to grasp. Many security properties exist and there are many methods to enforce them or to

avoid implementing common vulnerabilities in applications.

Ontologies can help to get an overview of web security and to structure this domain

by relating relevant assets, methods, tools, security properties, vulnerabilities and threats

(referred to as knowledge objects). In this paper, we present a novel ontology with a focus on

secure web applications, called SecWAO. It is based on the Context model of SecEval, which is

a domain model tailored to describe knowledge objects. By providing an overview, SecWAO

supports teaching purposes and web developers when specifying security requirements or

making design decisions.

Key words: security, web security, web engineering, ontology, taxonomy, overview, UML

M. Busch and M. Wirsing. An Ontology for Secure Web Applications. Int J

Software Informatics, 2015, xx(xx): 1–27. URL/xx.pdf

1 Introduction

As web applications are becoming increasingly complex they also bare many risks

for organizations and users. According to Kaspersky more than one billion attacks

were launched from web resources in 2014 [Kas14]; for 2013 Symantec reports breaches

of more than 550 million identities [Sym14], and Cenzic estimates that 96% of all web

applications contain security holes [Cen14]. One reason is that for developers the

term “security” is difficult to grasp. Many security properties exist and there are

many methods to enforce them or to avoid implementing common vulnerabilities in

web applications.

In such a situation, ontologies can help users and developers to get an overview

and a common understanding of a domain. An ontology consists of a set of con-

cepts and relations between these concepts, describing their various features and at-

† This work has been partially sponsored by the European Union under the FP7-project ASCENS,
257414.
] Manuscript received 2015-01-11; revised 20015-xx-xx; accepted 2015-xx-xx; published online 2015-
xx-xx



2 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

tributes1. Ontologies have many uses in computer science, e.g. in artificial intelligence

for representing knowledge [UG96], in autonomous systems for representing route

graphs [KFL+04], or in the Semantic Web for merging information and for search-

ing across different domains [GB02]. In the MMISS project (coordinated by Bernd

Krieg-Brückner) ontologies were the basis for creating a coherent set of teaching ma-

terials in the area of formal methods [KHL+02]. The Common Body of Knowledge

CBK [CBK15] on engineering secure software and services and the SecEval frame-

work [BKW14b] for evaluating security-related artifacts are structured according to

ontologies related with software engineering and security. Various languages are used

for formalizing ontologies; e.g. CBK, SecEval and the MMISS ontology are represented

in UML [Obj11]; another well-known ontology language is OWL [W3C].

In this paper, we present a novel ontology for secure web applications, called

SecWAO, which is intended to support web developers when specifying security re-

quirements or making design decisions. Similarly to the so-called Security Context

model of SecEval, SecWAO distinguishes between methods, notations, tools, cate-

gories, assets, security properties, vulnerabilities, and threats. For each of these classes

it provides relevant instances and relates them by different kinds of relationships such

as “belongs to”, “depends on”, or “uses”. For example, availability, system integrity,

noninterference, and data confidentiality, and data authenticity are security prop-

erties; cryptography, authentication, logging, auditing, error handling, session man-

agement, and input validation are methods; and web applications, databases, and

transmissions are assets.

The remainder of this paper is structured as follows: section 2 presents related

work and section 3 introduces the Security Context model of SecEval. In section 4 we

present our SecWAO ontology before we conclude in section 5.

Personal Note: Bernd and Martin (the second author of this paper) have met

almost forty years ago when both were research assistants of Friedrich L. Bauer

and Klaus Samelson and collaborated within the Project “Computer-aided Intuition-

guided Programming” (CIP) in the DFG Collaborative Research Center “Program-

ming Technology” (SFB 49). The CIP project can be seen as an early precursor of the

now popular model-driven development; its aim was to use transformations for the

systematic development of programs from formal specifications. Together with several

other researchers (such as Manfed Broy and Peter Pepper) Bernd and Martin worked

on techniques for program transformation, algebraic specification and programming

methods (cf. e.g. [BBD+81, BK80, BMPW86]) and designed the wide spectrum lan-

guage CIP-L which was one of the first languages comprising constructs for func-

tional and procedural programming as well as for formal specification [BBB+85].

Later, Bernd and Martin cooperated in the IFIP Working Group 1.3 [M+], the ES-

PRIT Working Groups COMPASS I and II [KB97], the BMFT Cooperative Research

Project KORSO on “Correct Software” [BJ95], and the BMBF Cooperative Project

MMISS “MultiMedia Instruction in Safe and Secure Systems” [KB+04]. During the

latter project Bernd introduced Martin to ontologies and stimulated the system-

1 Note that the origin of the notion of ontology stems from philosophy where it has a different
meaning; in philosophy, ontology stands for the study of the nature of being (see e.g. [Hes14])



An Ontology for Secure Web Applications 3

atic classification of the area of formal methods by an UML-based ontology (see

e.g. [KHL+02]). Our paper here is written in the spirit of these ideas: the UML-based

ontology SecWAO is used to structure the domain of web security.

Cooperating with Bernd is a very pleasant experience; he is interested and knowl-

edgeable in many scientific areas ranging from programming and formal methods to

cognitive science and robotics, he is an excellent project coordinator, and last but not

least, a good friend. We are looking forward to many further inspiring exchanges with

Bernd.

2 Related Work

This section, which is partly based on [BKW14b], introduces related work in the

area of ontologies for (web application) security.

It is commonly known that a good way to secure applications is to focus on

security during the Software Development Life Cycle (SDLC). For example, companies

use Microsoft’s Security Development Life Cycle (SDL) [LH05] or they apply ISO

27001 [ISO13]. ISO 27001 defines an information security management system that

requires the specification of security guidelines for policies, processes and systems

within an organization.

An example for supporting secure development of web applications along the

SDLC is the Open Web Application Security Project (OWASP). It comprises, beyond

others, a set of guides for web security requirements, cheat sheets, a development

guide, a code review and a testing guide, an application security verification standard

(ASVS), a risk rating methodology, tools and a Top 10 of privacy risks as well as a

Top 10 of web security vulnerabilities [OWA13].

A technique that can be used in the scope of a secure SDLC, is an ontology

that describes and relates concepts (which are also called “knowledge objects”). In

the domain of Software Engineering, knowledge objects are mainly assets, methods2,

tools3, security properties4, vulnerabilities and threats. Some knowledge bases use

ontologies as a structure for the knowledge objects they contain, as e.g., [W+15,

K+15, CBK15]. In this case, the term “ontology” refers to the structure of abstract

concepts, not to the resulting ontology or knowledge base that comprises instances of

concepts.

Ontologies aim at a shared understanding of a domain. In Software Engineering,

this is especially helpful when large teams work together and experts are recruited

for varying periods of time. Besides, knowledge bases aim at supporting software

and security engineers to learn about the state-of-the-art to avoid reinventing the

wheel [FFL13].

In addition, ontologies and their underlying structures, which are sometimes re-

ferred to as “(meta-)models”, can support developers by facilitating the evaluation of

methods, notations5 or tools that could be used. SecEval is a conceptual framework

for enabling software developers to evaluate methods, tools and notations for secure

2 A method is a strategy for reaching a goal. For example countermeasures against common vulner-
abilities are methods.
3 A tool refers to software that supports methods.
4 Synonyms for security properties are security goals or security features.
5 A notation is a format to convey information.



4 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

software in a structured way [BKW14b, BKW14a]. It consists of three packages: a se-

curity context model describing attributes and relations of assets, security properties,

vulnerabilities and threats as well as methods, notations and tools; a data collection

model, which records how data is gathered when researchers or practitioners do re-

search to answer a question; and a data analysis model specifying how reasoning on

previously collected data is done.

Our SecWAO ontology for modeling the main notions of web application security

is an instance of the Security Context model. SecEval’s focus is on security aspects,

even though its UML class model can describe non-security mechanisms as well. The

next section introduces SecEval’s Security Context model in more detail. A prototype

of an implementation of SecEval as a knowledge base is presented in [Rei14].

Regarding web security, Salini and Kanmani [SK13] present an approach for cre-

ating an ontology of security requirements, including the concepts of assets, web ap-

plications, vulnerabilities, threats, security requirements and stakeholders. Although

they define relations between these concepts, they do not provide attributes to de-

scribe them, as e.g., SecEval does. They mention some examples for these concepts,

but do not provide a concrete ontology. However, we recommend their related work

section for a chronological list of security-related ontologies.

In [DKF+03, DKF05] Denker et al. provide examples of elements and their rela-

tions for secure web services. In contrast to SecWAO, their ontology is restricted to

a tree of subclasses and properties of the concepts “Credential” and “SecurityMech-

anism”. They use a high level of abstraction and due the lack of different concepts,

they e.g., group “authentication, authorization, access control, data integrity, confi-

dentiality, privacy, exposure control, anonymity, negotiation, policy, key distribution”

inside of “SecurityNotation”, which itself is a descendant of “SecurityMechanism”. In

SecEval and SecWAO, we differentiate between security properties like confidentiality,

methods like authentication and assets like credentials.

In the following, ontologies and structures of ontologies from the domain of se-

curity are discussed that do not focus on web application security like SecWAO does.

The CBK (Common Body of Knowledge) [BEHS12] defines a model to collect

and describe general methods, techniques, notations, tools and standards. We used

the CBK as a starting point for our SecEval approach in [BKW14a]. In contrast to the

CBK, SecEval explicitly focuses on security-related features by providing a model that

distinguishes assets, vulnerabilities and threats and supports a fine-grained description

of methods and tools according to their usage in the SDLC. The CBK is implemented

as a semantic Wiki [CBK15] and serves as an open knowledge base.

Besides the work of Krieg-Brückner et al. [KHL+02] and the CBK, another ap-

proach with teaching purposes regarding security is called Cyber Security Learning

by security Ontology Browsing (SLOB). This project seems to be abandoned, as few

information is available and the prototype6 does not fully load. In addition, the same

working group provides an editor for security ontologies, called Security Ontology

eXpert tool (SOX)7. In SOX, an attribute that can be specified is an excerpt of books

that describe a concept. The approach to enrich an existing ontology by exploring

6 SLOB. http://cis.csi.cuny.edu:8080/SLOB/ [C+14]
7 SOX. http://cis.csi.cuny.edu/~project/SKATClient/ [C+14]

http://cis.csi.cuny.edu:8080/SLOB/
http://cis.csi.cuny.edu/~project/SKATClient/


An Ontology for Secure Web Applications 5

textbook indexes is described in [WCG13]. The OWL ontology enriched in [WCG13]

is presented by Herzog et al. in [HSD07]. It primarily focuses on the classification of as-

sets, threats, vulnerabilities and countermeasures and also contains some web-related

threats, as e.g., cross-site-scripting. However, it lacks common risks for web applica-

tions, as cross-site-request forgery, clickjacking or methods for session management

(cf. section 4).

In [FE09], Fenz and Ekelhart introduce an ontology based on OWL that com-

prises (among others) assets, security attributes, threats, vulnerabilities and controls.

Additionally, they use formal axioms to test if all necessary information to describe a

concept is specified in a concrete ontology. Unlike SecWAO, their ontology is rather

abstract, even so they also include physical security, as e.g., dumpster diving, safety

doors or smoke detectors. Kim et al. [KLK07] use OWL to create an ontology that

consists of several parts, like main security, credentials, algorithms, assurance or se-

mantic web services’ security. The main ontology includes security objectives and

security concepts like protocols, mechanisms (e.g., for securing a network) or policies.

Aside from cookies and some internet protocols, web application security is not men-

tioned. Unfortunately, the server hosting the full ontology files seems no longer to be

online. In contrast to SecEval and the CBK, neither [HSD07], [FE09] nor [KLK07]

allow for the representation of methods that are not directly related to security, but

are used in the context of secure development.

Structures of ontologies can also be used as a basis for eliciting security re-

quirements, as already seen in [SK13]. The i* [RWT14] metamodel is the basis of

a vulnerability-centric requirements engineering framework introduced in [EYZ10].

This extended, vulnerability-centric i* metamodel aims at analyzing security attacks,

countermeasures, and requirements based on vulnerabilities. Similar to our approach,

the metamodel is represented using UML class models. Instances of this metamodel

use an i*-specific representation, which is not based on UML. Main elements of the

metamodel are: vulnerability, attack (which can exploit a vulnerability; executed by

an actor), effect and security impact (e.g., on a resource). Although the terms ontol-

ogy or taxonomy are not used in [EYZ10], Elahi et al. provide a detailed example of a

browser and a web server, including threats by a hacker and a fake web site. For this

example they analyze countermeasures for a concrete system in order to estimate the

risk of vulnerability exploitation. As they do not provide an ontology, we think that

SecWAO might enable security engineers to systematically examine relevant security

mechanisms of web applications when modeling with i*. For evaluations of existing

security ontologies, the interested reader is referred to [SSCW12, BLVG+08].

3 The underlying “Security Context model”

In the following, SecEval’s Security Context model is introduced. It is the UML

class model for the instance model (object model) that will represent our ontology in

section 4. This section is based on [BKW14b, BKW14a] and includes minor changes

in the model, which has been further developed in the meantime.

The Security Context model provides a structure for the classification of (security-

related) methods, notations and tools together with security properties, vulnera-

bilities and threats. Within this model a security feature is a class element, called



6 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

writtenInLanguages [*]
runsOnOperatingSystems [*]
usedFrameworks [*]
technicalRequirements [*]
licenses [*]
timeForInstAndConfiguration
canBeUsedInteractively
canBeUsedAutonomously
hasStartupParameters
hasGUI
hasTextBasedInterface

Tool

creators [*]
preconditions [*]
problemDescription
goals [*]
consequences [*]
costs
isStandardized
basedOnStandards [*]
hasFocusOnSecurity
version

Mechanism

input [*]
output [*]
isModelDriven
hasChecklists
isPhysical

Method

recognition
resistance
mitigation
recovery
forensics
blackHat
whiteHat
none

«enumeration»

TypeOfSecurityMethod

circumstances [*]
affectedComponents [*]

Vulnerability

proofOfConceptOrPrototype
almostStable
stableOrEvaluated

«enumeration»

TechnicalMaturity

securityEngineer
customer
attacker
tester
programmer
lawyer
forensicScientist

«enumeration»

Rolenames [1..*]
tags [*]
url [*]
relatedSources [*]
summary
examples [*]

KnowledgeObject

SecurityProperty

applications
humans
libraries
network
operatingSystem
web

«enumeration»

Location

oneWorkingGroup
someWorkingGroups
industrialPractice
mainstream

«enumeration»

Adoption

admins [*]
configuration [*]

Asset

easy
average
difficult
theoretical

«enumeration»

Difficulty

isGraphical
isTextual
isTableBased

Notation

formal
semiformal
informal

«enumeration»

LevelOfFormality

severe
moderate
minor

«enumeration»

TechnicalImpacts

Threat

criticalData
uselessData
none

«enumeration»

Recon

widespread
common
uncommon

«enumeration»

Prevalence

untrained
trained
expert

«enumeration»

Experience

name

Category

endangeredAts
1..*

neededUserExperience 1..*

userRoles 1..*

1

1..*

toolSupport
*

*1 1..*

mayBeCausedBy *

relatedSecPs

* *

mayExploitVs

{ordered}
1..*

1..*

partOf

*belongsTo

*

shieldedVs
* *

detectedVs
* *

securedAts

*

mitigatedThreats*

*

*

description

Ambiguity
ambiguity

*

dependsOn

*

belongsTo

*

endangeredSPs *

*

uses

*

exploitability 1 detectability 1

uses

*

usedAts*

intendedSecPs 1..*
*

* *

belongsTo*

1

kindOf* 1

1

1

Fig. 1. SecEval: Security Context

SecurityProperty, and an abstract class Mechanism is used from which the classes

Method, Notation and Tool inherit common attributes such as goals or costs.

In figure 1, enumerations are edged in grey and the background of classes which

can directly be instantiated is colored and the names of them are not italic. The

same colors are used in following figures. All attributes and roles are typed; however

the types are not shown in the figures due to brevity. The main characteristics are

specified as boolean types (can.., has.., is..).

A Mechanism is described by a problem statement, by the goals it strives for, by

its costs and by the consequences it implies. Mechanisms can be based on standards

or be standardized themselves. Before applying a mechanism, the preconditions that

are necessary for using it have to be fulfilled. Furthermore, an estimation regarding

technical maturity and adoption in practice might be given. It can also be expressed

whether or not the mechanism has a special focus on security, because in practice

many mechanisms might also be used for security purposes, but do not directly focus

on them. Several levels of usability can be stated indicating the experience users need

in order to employ a mechanism.

The classes Method, Tool and Notation inherit all these properties from



An Ontology for Secure Web Applications 7

the class Mechanism and have their own characteristics defined by a set of specific

attributes. For example, a Method has some general attributes, such as input, out-

put and if it is model-driven or provides checklists for developers. A method can be

supported by notations or tools; this is represented in the model with corresponding

associations between the classes.

For a Notation, characteristics such as whether the notation is graphical, textual

or table-based are considered.

The description of a Tool is given, among others, by the information of languages

it is written in, operating systems it supports, frameworks it uses and licenses under

which it is released.

The abstract class KnowledgeObject is adopted from the CBK [BEHS12,

figure 2.2] as a super class for all elements which are described by SecEval’s Context

model. A KnowledgeObject has associated names, tags and related sources, which

could be any kinds of sources, as publications or URLs. The UML association class

Ambiguity allows to connect and to describe ambiguous knowledge objects that are

not (yet) clearly separated in practice.

For convenience, we allow to group knowledge objects within Categories, which

themselves can belong to knowledge objects. This is especially useful if instance dia-

grams get bigger.

Security features, such as confidentiality8 or integrity9 are represented by the

class Security Property. Security properties can also be based on other security

properties.

Security properties are always related to Assets. For example the security prop-

erty “confidentiality” can be a feature of a transmitted data package. For us, an asset

is something of value that has to be protected, as web servers, web applications or in-

formation like passwords. Assets can belong to or be used by other assets and some of

them, as web servers, might be described by a certain configuration. Threats endanger

at least one asset and general methods can secure assets or use them. E.g., crypto-

graphic hashing secures passwords by not storing them directly and authentication

uses passwords to identify users.

A Vulnerability is “a weakness that makes it possible for a threat to oc-

cur” [Bis02, p.498]. Thus, it endangers security properties. Examples are injection10,

buffer overflows, etc. The objective of certain methods is to detect vulnerabilities or to

shield them from being exploited by a threat. Every vulnerability belongs to at least

one location; details about the component the vulnerability is located in can be given

using the attribute affectedComponent. Furthermore, the categorization scheme from

OWASP Top 10 [OWA13] is included (which is adapted from the OWASP Risk Rating

Methodology [OWA14d]) using prevalence, impact level, detectability and exploitabil-

ity. Regarding the latter two roles, the Difficulty “theoretical” means that it is

practically impossible to detect or exploit a vulnerability (cf. figure 1). For concrete

vulnerabilities, the inherited attribute name can refer to an identifier of the Common

8 Confidentiality “is the concealment of information or resources”. [Bis02, p.4]
9 (Data) integrity “refers to the trustworthiness of data or resources, and it is usually phrased in
terms of preventing improper or unauthorized change”. [Bis02, p.5]
10 “Injection flaws occur when untrusted user data are sent to the web application as part of a
command or query”. [Pau13, p.9]



8 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

Fig. 2. Security Context: Further Associations

Vulnerabilities and Exposures List [The15]. SecEval uses the enumeration Recon to

describe possible leakage of (possibly critical) data.

A Threat is “a potential violation of security” [Bis02, p.6]. It is treated as

a kind of method which is vicious. At least one vulnerability has to be involved,

otherwise a threat is not malicious (and the other way around), which is denoted by

the multiplicity [1..*]. Additionally, threats can be mitigated by other methods.

For SecWAO, we primarily focus on the associations between classes. Fig-

ure 2 depicts that a notation can belong to another notation. For example Javadoc

belongs to Java [Ora15] and extends it, whereas the Scala [O+15] programming lan-

guage is just inspired by Java (among others).

A tool can be based on other tools, which is the case when libraries are used

or when plugins are written. The association worksWith denotes that tools work to-

gether; for example a tool might process the output of another tool that was executed

before. The abstract classes TAreasOfDev and MAreasOfDev are depicted to indicate

that further attributes, related to the development phases a tool or method is used

in, can be specified with SecEval. The interested reader is referred to [BKW14b] for

further details.

A method can describe other methods, as e.g., the OWASP Risk Rating Method-

ology describes the general method of rating risks. This methodology defines steps

that can be represented as an ordered list. Besides, a method can extend other meth-

ods, which means it might change them. It is also possible that other methods are

used without any changes. The role belongsTo usually involves using a method.

An advantage of our model is that it can easily be extended. If someone needs

a more detailed approach, additional elements can be added, as discussed in further

detail in [BKW14b].



An Ontology for Secure Web Applications 9

4 SecWAO: Secure Web Applications’ Ontology

In this section we present our approach by instantiating SecEval’s Context model

to establish an ontology for secure web applications. Although this paper focuses on

web applications, SecEval can also be used for relating knowledge objects that are not

in the scope of the internet. We introduce SecWAO by example, before we detail the

relationships between web-related security properties, methods and vulnerabilities.

Note that diagrams depict excerpts of the ontology by visualizing chosen perspectives.

4.1 Overview of SecWAO by example

In the following we illustrate relations of cross-site-scripting (XSS). XSS is a kind of

injection that aims at adding malicious script code – usually JavaScript – to a web-

site so that the browser executes the code. [She12, p.24] According to OWASP’s

Top 10, it is the third most risky web applications’ vulnerability and the most

widespread. [OWA13]

The upper part of figure 3 depicts the main classes of SecEval’s Context model.

Instances of these classes are shown in the lower part, around an instance from the

class Vulnerability that is called cross-site-scripting (XSS). In UML, an in-

stance is denoted by an underlined object name, followed by a colon and the name

of the class that it instantiates. In this section, the second part is hidden in the case

that a legend provides distinctive features, as shades of color. We encourage reading

the online version of this paper, as colors improve clarity.

In figure 3 SecWAO helps not only to express that XSS is a kind of injection

but also that it is threatened by JavaScript code provided in a way to be executed.

In practice, the name of threats and vulnerabilities are often used for both, e.g. the

instance of Threat could also be named “cross-site-scripting (XSS)”. There are sub-

types of XSS: reflected XSS executes code in a browser that has (most of the time

involuntarily) been sent by a user. Stored XSS is delivered to all browsers that visit

a page that contains vulnerable content, which has been stored at the server since

a successful attack. [Pau13, p.10] A vulnerability would be harmless if it does not

jeopardize security properties. Weakening control flow integrity11 can be especially

harmful, because data security, as confidentiality of the user’s data in the browser

and the integrity of the data which is sent to the server are based on it. For example,

JavaScript code injected into an online banking service might undermine the browser’s

Same-Origin-Policy12 in order to secretly report the user’s account balance to a third

party. JavaScript code might also alter the amount of money after a user submitted a

value for a bank transfer, which violates data integrity. In figure 3 we model general

SecWAO assets as “user data” and “website in browser”. However, assets can be finer

grained in case developers want to extend SecWAO to model more concrete scenarios

for their web application. General assets, which are not specific to web applications,

can be found in [HSD07, figure 3].

11 Control flow integrity is the property of software that restricts a user to execute functions in a
predefined order, according to the program logic.
12 The Same-Origin-Policy makes sure that “actors with differing origins are considered potentially
hostile versus each other, and are isolated from each other”
(http://www.w3.org/TR/html5/browsers.html#origin)

http://www.w3.org/TR/html5/browsers.html#origin


10 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

SecurityContext

SecurityProperty

Vulnerability

KnowledgeObject

Mechanism

NotationMethod

Threat

Asset

Tool

HTML Purifier Library : Tool

provide JavaScript code
in a way to be executed :

Threat

http-only flag for cookies

input validation libraries

x-xss protection header

control flow integrity

data confidentiality

data integrity

data security

cross-site scripting
(XSS)

injection prevention

website in browser

input sanitization
by blacklisting

input validation
by whitelisting

input validation

XSS prevention

PHP : Notation

reflected XSS

basedOn basedOn

stored XSS

user data

injection
supportedMethod

endangeredSPs

intendedSecPs mayExploitVs

shieldedVs

belongsTo

belongsTo

shieldedVs

uses

uses

endangeredAts

uses

supportedMethod

kindOf

kindOf belongsTo

uses

uses

uses

Fig. 3. Upper part: SecEval’s Security Context model, serving as a legend for the
lower part: SecWAO example of relations regarding cross-site-scripting (XSS).
(If printed without colors: instances of the class Vulnerability are located above and below
“cross-site-scripting”; instances of the class Method are grouped around “XSS prevention”.)

On the lower right of figure 3, methods to shield web applications from vulnerabil-

ities like injection are depicted. In general, injection prevention uses input validation,

preferably whitelisting, where allowed inputs are specified and different input is dis-

carded. Other use cases require input sanitization by blacklisting, where developers

struggle to filter all kinds of harmful inputs. [OWA15a]

For web applications, input validation libraries for XSS-blacklisting exist. Addi-

tionally, the http-only flag for cookies13 can be set and the x-xss protection header

can advise browsers to turn on built-in XSS protection [Tia14]. With instances of

SecEval’s Context model we can also specify that the HTML Purifier Library [Y+15]

is an input validation library written in PHP [PHP14].

4.2 Security Properties

Security requirements consist of at least two elements: the asset that should be secured

and the kind of security that “secured” refers to. The latter can be expressed as an

instance of the class SecurityProperty from SecEval’s Context model.

13 “The HttpOnly attribute limits the scope of the cookie to HTTP requests. In particular, the
attribute instructs the user agent to omit the cookie when providing access to cookies via ‘non-
HTTP’ APIs (such as a web browser API that exposes cookies to scripts).” [A. 11]



An Ontology for Secure Web Applications 11

data security

anonymity

Legend Security Properties

SecurityProperty

dependsOn

data authenticity

control flow integrity

data integritydata confidentiality

data freshness

non-repudiation

noninterference

system integrity

availability

pseudonymity

data retention user identity

user privacy

Fig. 4. SecWAO Security Properties: Overview

Figure 4 depicts common security properties and their interrelations, using in-

stances of the association with the role dependsOn that belongs to the class Security

Property (cf. figure 1). For us, “common” means that they are mentioned in Wiki-

pedia14 and in several scientific publications, which was verified with Google Scholar15.

Please note that we provide informal definitions for security properties, as the first

goal of SecWAO is to quickly get an overview of knowledge objects and their relations

to each other. This is why we also explain concepts in plain terms and do not refrain

from citing Wikipedia in case it provides comprehensible definitions. In this section,

a “user” denotes a human user as well as automated users controlled by a computer

system.

Availability16 of a functionality depends on system integrity17, because if e.g.,

an attacker has taken over a system, system integrity is not necessarily provided as the

system might be shut down or destroyed to the attacker’s liking. In case an attacker

manages to violate control flow integrity, e.g., by using URLs that directly reference

program functions, system integrity can be at stake. Vice versa, violating the control

flow integrity of a program is possible if attackers control a system, as they can alter

program code or the configuration of a web application firewall.

It is not surprising that data security (depicted as UML package in figure 4)

14 Wikipedia. https://www.wikipedia.org (English or German)
15 Google Scholar. https://scholar.google.com
16 Availability “refers to the ability to use the information or resource desired”. [Bis02, p.6]
17 System integrity is a “condition of a system wherein its mandated operational and technical
parameters are within the prescribed limits”. (Wikipedia: System integrity)

https://www.wikipedia.org
https://scholar.google.com


12 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

depends on system integrity and control flow integrity and vice versa, especially as

insecure data like disclosed configuration data might provide expedient information for

attacks. Note that methods can shield from related vulnerabilities, as e.g., a JavaScript

sandbox in a browser can prevent malicious code from endangering system integrity.

Data security refers to different security properties; the most common are data

confidentiality and data integrity (depicted at the bottom of figure 4). When

methods to ensure confidentiality and integrity are not implemented properly enough,

all security properties that are based on them can be endangered. For example, dis-

closing confidential home addresses leads to a violation of user privacy18 as well as

anonymity or pseudonymity, in case a web application allows users to interact with

a service without a (unique) name or by just using a nickname (cf. [PP06, p.614f]).

Besides depending on confidentiality, privacy also depends on data retention19. Con-

fidentiality, integrity and availability are often referred to as “CIA Triad”, although

many other security features are required and realized these days.

Noninterference20 is also based on confidentiality, as it must be possible to restrict

read or write access to classified data. Additionally, it depends on data authenticity21,

which requires data freshness22, data integrity and user identity23.

Non-repudiation24 needs data authenticity and is transitively based on the secu-

rity properties on which data authenticity depends. The term “traceability” is some-

times used for weaker forms of non-repudiation like logging. [BSS11, p.12]

In the main ontology of [KLK07], a list of security objectives is provided25 that

also has more elements than the CIA Triad. Our security properties share some of

the concepts, although we differentiate between methods that help to reach security

goals. For example, in SecWAO “replay prevention” is a method that helps to realize

the security property of data freshness (cf.figure 7).

Security properties are closely related to assets they characterize. In figure 5,

general data security properties such as data confidentiality and data authenticity are

presented in the contexts of three different assets – corresponding to the boxes in the

figure.

In the context of protocols for agreeing on a key for future communication (key

exchange), data confidentiality may depend on forward anonymity and forward se-

crecy. The former means that recorded data traffic and compromised (long-term) keys

18 Privacy “is the right to control who knows certain aspects about you, your communications, and
your activities”. [PP06, p.604]
19 Data retention defines which information is stored and how long it will be kept.
20 Noninterference “is a property that restricts the information flow through a system”. [vTJ11,
p.605] This usually means that information and users are grouped into categories with different
levels of security and information from one level can only affect information of other levels according
to policies.
21 Data authenticity defines that received data was send from users that are who they claim to be.
22 Data freshness is given if data is up-to-date (and not a replay of data that was sent in the past).
23 (User) identity “is a set of information that distinguishes a specific entity from every other within
a particular environment.” [vTJ11, p.584]
24 Non-repudiation “refers to an inability to disavow a previous agreement”. [vTJ11, p.852] Simpli-
fied: a user cannot deny to have sent or received a message at a given time with a given content.
25 Security goals mentioned in [KLK07] are confidentiality, availability, user authentication, message
authentication, authorization, message integrity, key management, trust, host trust, replay preven-
tion, covert channel prevention, separation, traffic hiding and anonymity.



An Ontology for Secure Web Applications 13

Cryptosystems

Key-agreement protocols

Digital signatures

Asymmetric-key cryptography

one-wayness of asymmetric encryption

asymmetric key unbreakability

asymmetric key unbreakability

ciphertext indistinguishabilityreal-or-random security

data authenticity

data confidentiality

data confidentiality

forward anonymity

semantic security

non-malleability

non-malleability

forward secrecy

unforgeability

Fig. 5. SecWAO Security Properties: Details

do not disclose the identities of the communication partners. The latter means that

“disclosure of long-term secret keying material does not compromise the secrecy of

the exchanged keys from earlier runs”. [DVOW92, p.7] In other words: session keys

will not be revealed, even if all data traffic was recorded and long-term keys have been

compromised after the sessions took place.

Confidentiality depends on properties of cryptosystems, as described in a Wiki-

pedia article26. According to this article, semantic security27, real-or-random secu-

rity28 and ciphertext indistinguishability29 are equivalent and if they are broken,

non-malleability30 is also broken. Besides, typical security features that are assumed

to hold for asymmetric-key cryptography are key unbreakability31 and one-wayness32.

Security properties for digital signatures are depicted at the bottom of figure 5:

26 German Wikipedia: Sicherheitseigenschaften kryptografischer Verfahren
27 Semantic security means that attackers can derive nothing more than the length of an encrypted
message.26
28 Real-or-random security means that attackers cannot distinguish two encrypted messages, even
if one of it encrypts a plaintext they provided.26
29 Ciphertext indistinguishability means that attackers cannot distinguish pairs of cyphertexts, even
if they know their plaintexts.26
30 Non-malleability means that “given the ciphertext it is impossible to generate a different cipher-
text so that the respective plaintexts are related”. [DDN03]
31 Unbreakability means that attackers cannot calculate the private key from the public key.26
32 One-wayness means that attackers cannot encrypt a given ciphertext.26



14 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

Fig. 6. SecWAO: Main Methods

Strong unforgeability33 is based on existential unforgeability34. Asymmetric key un-

breakability and non-malleability can also apply to digital signatures. In this context,

non-malleability is referred to as not being able to create a second valid signature for

a pair of a message and its valid signature.26

Other security features that are modeled with SecWAO, but not presented in

this paper are e.g., collision resistance, which is a property of cryptographic hash

functions or “provable security”, which means that security properties of an asset are

mathematically proven. Herzog et al. [HSD07] specify goals that contain trust and

correctness, which we omitted due to the vagueness of these terms.

4.3 Methods

Methods help to establish security properties for an asset. The main methods used in

SecWAO are depicted in figure 6. Input validation has to implement error handling

for coping with illegal inputs, which is represented in the diagram by instantiating the

Method’s association with the role uses (cf. figure 2). Errors as well as success messages

(e.g., a successful authentication, i.e., a user login) or status messages (e.g., an expired

user session) can be logged. Authorization is a synonym for access control [vTJ11, p.2]

and relies on successful authentication to identify users that request access, e.g., to an

internal web page. The management of user sessions is also based on authentication,

although anonymous sessions are possible that only require to identify, e.g., a cookie

instead of authenticating a user. Cryptography aims at protecting “a secret from

adversaries, interceptors, intruders, interlopers, eavesdroppers, or simply attackers,

opponents, and enemies” [vTJ11, p.283]. As the aim of authorization is similar, it

often relies on cryptographic methods to enforce access control. For authentication

cryptography is frequently employed to ensure confidentiality, integrity and freshness

of requests in authentication protocols.

All tools that support the methods mentioned so far typically need to be config-

ured. Otherwise, an authentication service might grant access to all users or an error

33 Strong unforgeability “ensures the adversary cannot even produce a new signature for a previously
signed message”. [BSW06]
34 Existential unforgeability means that “an adversary who is given a signature for a few messages
of his choice should not be able to produce a signature for a new message”. [BSW06]



An Ontology for Secure Web Applications 15

message might disclose critical confidential information about a system. Configuration

management is a method that relates to secure employment of methods.

In this paper, we focus on technical methods, although we think that non-

technical secure development methods are equally important. Examples are security

aware management (granting time and money for more secure implementations) and

a security-aware software development life cycle, including e.g., security requirements

elicitation, secure design methods, code reviews and penetration testing. Existing

“applied security” literature typically includes a set of security principles35 like sim-

plicity, open design, minimum exposure, secure-by-default, fail securely etc. [BSS11]

For example, secure-by-default and fail securely belongs to the methods “configuration

management” and “error handling” in SecWAO.

The upper half of figure 7 details how cryptography relates to other methods.

We use bold text in the object diagrams to identify methods that we think are central

to recognize a certain set of methods, as e.g., methods related to cryptography. This

set of methods support data integrity, authenticity, confidentiality and freshness, as

can be seen at one glance in figure 7 (cf. instances of the class SecurityProperty).

However we just exemplarily depict links to security properties and assets, as we focus

on methods and their interrelations.

A cryptosystem36 can be symmetric, asymmetric or hybrid, which is determined

by whether a single key is used for decryption and encryption, or a public and a private

key are used, or an asymmetric key is used for encrypting a generated symmetric

key that encrypts a message. Especially for asymmetric keys, key management is

important, as such keys are often reused many times in contrast to symmetric ones.

Other methods that belong to cryptography are the mechanisms of random num-

ber generators and cryptographic hash functions (i.e., one-way hash functions). Ran-

dom number generators can be implemented in hardware or software. Software im-

plementations are so-called “secure pseudo-random number generators”: algorithms

that produce random numbers in a sequence that is determined by a seed. The seed

has to be given as an input for the algorithm [vTJ11, p.995]. Generators are e.g., used

for digital signatures that enforce data authenticity.

Input validation – as known from the example of section 4.1 – is depicted

on the bottom of figure 7. Besides XSS prevention, e.g., supported by the Content

Security Policy37, other types of injection prevention exist. For example, database

query injection (referred to as “SQL injection”) can be avoided by using libraries

for prepared statements. Prepared statements are available in most programming

languages and they distinguish between user input38 and SQL statements so that the

35 For a broad overview of practical security principles, the interested reader is referred to
https://www.owasp.org/index.php/Category:Principle.
36 A cryptosystem “is a system consisting of an encryption algorithm, a decryption algorithm, and
a well-defined triple of text spaces: plaintexts, ciphertexts, and keytexts”. [vTJ11, p.284]
37 Content Security Policy is “a mechanism web applications can use to mitigate a broad class of
content injection vulnerabilities, such as cross-site-scripting. The server delivers the policy to the
user agent via an HTTP response header or an HTML meta element”. [W3C14]
38 “User input” refers to any input sent by users or their devices, including input the user entered
in a text field, cookies or protocol headers sent by a browser, etc.

https://www.owasp.org/index.php/Category:Principle


16 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

Legend

Method

SecurityProperty

Asset

belongsTo

labeled links

input validation by whitelisting

input sanitization by blacklisting

cryptographic hash functions

SQL injection prevention

http-only flag for cookies

input validation libraries

cryptographically secure
pseudo-random number
generators (CSPRNG)

x-xss protection headercontent security policy

control flow integrity

data integrity
digital watermarking

input validation

injection prevention

data confidentiality

website in browser

parameterized
prepared statement

symmetric-key
cryptography

hybrid
cryptosystems

asymmetric-key
cryptography

hardware random
number generators

message
authentication
codes (MAC)

digital signatures

replay prevention

key management

web application
(server-side)

parameterized
stored procedure

SecurityProperty

cryptographic
protocols /

cryptosystems

data authenticity

data authenticitycryptography

block cyphers

stream ciphers

XSS prevention

escaping user
supplied input
escaping user
supplied input

key generation

key exchange

key revocation

key storage

steganography

data freshness

database

browser

Method

cookies

Asset

relatedSecPs

usedAts

relatedSecPsrelatedSecPsrelatedSecPs

securedAts

securedAts

uses

uses

relatedSecPs

usesusesuses

uses

usedAts

usesuses

uses

relatedSecPs

uses

uses

relatedSecPs

usedAts

usedAts usedAts

uses

relatedSecPs

uses

relatedSecPs

Fig. 7. SecWAO Methods: Cryptography and Input Validation

former cannot influence the latter. Other options, as stored procedures39 or escaping

all user supplied input according to the database syntax that is used, are considered

less secure, as a single careless mistake can bear a severe security flaw. [OWA15c]

Figure 8 focuses on authentication, including typical methods that are used

for web applications, as registering for an account using common types of registration,

ways to securely recover credentials and typical logout mechanisms. Authentication

itself is often used as a synonym for checking the validity of the user’s identification,

which we can express by adding a link with the role ambiguity that belongs to

KnowledgeObject (cf. figure 1). A less well-known method is to check if the user

enters a password for accessing the application in a so-called “panic mode”. This mode

allows users from unsafe regions around the world to give away a valid password if

threatened. This password permits an attacker to sign in to a web application that

does not give rise to suspicion, while hiding personal user data and restricting access

to critical functionality. That is why the panic mode is also related to state-based

access control (cf. figure 9). [OWA15d]

The upper part of figure 8 shows knowledge objects related to session man-

agement. On the upper left, common methods like starting or ending a session are

depicted. In the case a critical error occurred during a session, it might be advisable

to end the session. Note that sessions also exist for unauthenticated users; however

the session identifier (ID) should be changed after authentication to avoid session fix-

39 Stored procedures are located in the database and can be called from a client using parameters,
which shifts the problem of securing SQL statements from the application to the stored procedure.



An Ontology for Secure Web Applications 17

Legend

Method

SecurityProperty

Asset

belongsTo

labeled links

check validity of identification
(login, sign-in)

human verification (CAPTCHA)

handle authentication failure

require additional
countermeasures next time

session takeover prevention

multi-factor-authentication

synchronizer token pattern

mail verification via
received mail with code

phone call with reset code

session management

request re-authentication

checking origin header

checking referrer header

check for additional
countermeasures

email verification via
received URL

generate new session
ID after authentication

email with reset URL

remote session listing

check for login delay

lock account or IP
(maybe temporarily)

mail with reset code

human verification
(CAPTCHA)

identity verification

authentication

register for account

challenge-response

recover credentials

check geolocation

SecurityProperty

check credentials

adult verification

session timeout

remote session
invalidation

secret questions

x-frame-options

one-time token

check for locks

csrf prevention

single-sign-on

single sign-off

error handling

increase delay

user identity

user identity

start session

user privacy

panic mode

end session

credentials

Method

logout

logout

Asset

uses

relatedSecPs

uses

uses

uses uses

relatedSecPs

uses uses
uses

uses

uses

relatedSecPs

uses

uses

usedAts

uses

uses

uses

ambiguity

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses uses

uses

uses uses

uses

uses uses

uses

Fig. 8. SecWAO Methods: Authentication and Session Management

ation40. Other methods to prevent session takeover are depicted on the right: It can

be helpful to enable users to list their active sessions so that they can invalidate them

in case a device was stolen. Methods to prevent cross-site-request-forgery (CSRF)41

are modeled according to their description in [OWA14b].

Authorization defines an access source, an access target and actions that are

permitted to be executed. In addition, figure 9 depicts an access control enforcement

system that decides whether or not to permit a request for access, according to access

control policies, which can be noted in languages as XACML [OAS05]. These policies

can be defined by a provider or by users, as expressed by the role belongsTo that

is played by the category access manager. Access control capabilities describe

common approaches used for authorization, as role-based access control (the user

belongs to roles and access is specified for roles) or state-based access control (access

control policies can, e.g., refer to the current time or the mode an application is in,

like maintenance mode).

40 Session fixation exploits cases where session IDs are not changed after the login, as an attacker
can access a website to obtain an ID, trick a user to access and sign in to the same website using
this ID (e.g. provided by a URL within an email) and can continue using the – now authenticated –
session. [OWA15b]
41 A CSRF attack “causes a users web browser to perform an unwanted action on a trusted site for
which the user is currently authenticated” [OWA14b]. For example a user clicks on a link within a
junk mail that uses an active session of an online shop to buy an unwanted product.



18 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

cryptographic protocols / cryptosystem
s

H
T

T
P

 strict transport security (H
S

T
S

)

application m
ode-based access control

access control enforcem
ent system

 :
C

ategory

access control capabilities :
C

ategory

transport layer security (T
L

S
)

perfect forw
ard secrecy (P

F
S

)

fram
ew

ork-specific access
control language : N

otation
navigational nodes

(i.e., parts of w
eb pages)

authorization

com
plete m

ediation

fail securely principle

least privilege principle

end-to-end encryption

enforce navigation flow

access m
anager :

C
ategory

access target :
C

ategory

access source (actor) :
C

ategory

data retention strategy

em
ergency pow

ers
(break glass policy)

enforce predefined
w

orkflow

m
andatory access

control (M
A

C
)

separation of duties

discretionary access
control (D

A
C

)

role-based access
control (R

B
A

C
)

data integrity

type of action :
C

ategory

access control
language : N

otation

digital rights
m

anagem
ent (D

R
M

)

tim
ed access control

X
A

C
M

L
 : N

otation

w
eb application
(server-side)

functionality access
delegation of rights

FA
C

PL
 : N

otation

navigate to
navigational node

data confidentiality

navigational access

encrypted storage

user-defined
access control

state-based access
control

inform
ation flow

policy

location-based
access control

usage control

noninterference

extract contents

provider-defined
access control

privacy settings
data processing

update, w
rite

sum
m

arizing

program
 data

transm
ission

functionality

access quota

user privacy

user privacy

panic m
ode

aggregating

inform
ation

data access

analyzing

w
eb server

classifying

validating
reporting

user data

execute
function

database

C
R

U
D

sorting

stream

device

create

delete

server

D
R

M

client

file

user

read

share

view
save

print

copy
uses

relatedSecP
s

partO
f

partO
f

usedA
ts

uses

uses

uses

extends
extends

uses

relatedS
ecP

s

relatedS
ecP

s

usedA
ts

usedA
ts

usedA
ts

uses

relatedS
ecP

s

partO
f

partO
f

uses

uses

uses

extends

uses

uses

relatedS
ecP

s
uses

uses

partO
f

relatedSecP
s

uses

uses

L
egendF

orT
hree

M
ethod

M
ethod

N
otation

N
otation : N

otation

S
ecurityProperty

SecurityP
roperty

A
sset

A
sset

C
ategory

C
ategory : C

ategory

belongsTo

labeled links

Fig. 9. SecWAO Methods: Authorization



An Ontology for Secure Web Applications 19

For web applications, common usages for cryptosystems are secure connections

between a browser and a server to transmit confidential information. The protocol

TLS [T. 08] with its option for Perfect Forward Secrecy (cf. security property forward

secrecy in section 4.2) and the browser policy HSTS42 are methods that are used in

practice.

Besides, in figure 9 we use SecWAO to clarify the difference between types of

action: functions of an application can be executed and data can be accessed. An

example is DRM (Digital Rights Management), which aims at restricting copying,

viewing or extracting information from files or videos. Data access can also be re-

stricted by defining policies for CRUD (create, read, update, delete) on objects, as

e.g., database records. Additionally, web applications focus on restricting navigational

access. This allows to specify whether a user is allowed to navigate to a so-called

“navigational node”, i.e. a (part of) a web page. This avoids dead-ends, as it avoids

navigating to a function a user is not allowed to access.

In figure 10 logging, error handling and configuration management are

presented. They closely relate to system integrity and are used by many other methods

(cf. figure 6). In the context of web applications, system integrity is also important

for the client. Consequently, it is common courtesy to provide users with possibilities

for download verification, especially when downloading programs. Digital signatures

or cryptographic hashes can verify a download in case it was not transmitted by a

protocol, as e.g., TLS that supports integrity.

Non-repudiation, beyond re-authentication before executing critical actions, has

not commonly been realized for typical web applications so far. Digital signatures

and logging (ideally by a third party) could ease traceability and forensics for critical

actions like purchases, or changes in the configuration of safety-critical appliances

that provide a web interface.

Monitoring uses logging and log analysis for intrusion detection as well as for

intrusion prevention. Log sanitization means that sensitive information is removed43

from log messages. This can be important for information that has to be deleted after a

certain period of time due to legal regulations and for debugging by developers who are

not allowed to access concrete data sets of the production system. For error handling,

a sanitization method should be applied to error messages in order to keep details

of the system and the algorithm internal. Consequently, an internal error message

should be replaced by a short message, which does not confuse normal users and does

not allow attackers to gain any insights. Additionally, the instance fail securely

principle reminds developers to carefully consider error states as regular part of

their program, as web applications should be constantly available – meaning that

restarts to recover a consistent state are undesirable.

Regarding configuration management, we provide some examples in figure 10, as

server management and browser configuration. Browsers can be configured by users,

but their behavior can also be influenced by web servers’ responses, as already intro-

duced above, e.g., by using a content security policy and other http headers [OWA14c].

42 HSTS enables “web sites to declare themselves accessible only via secure connections” [J. 12],
which prevents a man-in-the-middle from hijacking unencryped requests (http) users sent to servers
that usually redirect from unencrypted pages to an encrypted pages (https) after this first request.
43 Wikipedia: Sanitization (classified information)



20 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

Fig. 10. SecWAO Methods: Logging, Error Handling and Configuration Management

In general, objects of SecWAO can be grouped according to different aspects. For

example methods could also be grouped according to a certain security property like

data integrity, to learn about methods that are related to it. Purists might as well

query the tree that contains all UML elements.

4.4 Vulnerabilities and Threats

Figure 11 depicts the ten top vulnerabilities of web applications (according to OWASP

[OWA13]) and relates them with major threats that may exploit these vulnerabilities.

The diagram is roughly grouped according to the main methods we used in the pre-

vious subsection. For example the instance of the class Vulnerability that is named

unvalidated input corresponds to the method’s instance input validation, de-

picted in figure 7. These correspondences can be modeled using associations from

figure 1 (i.e. with the roles detectedVs or shieldedVs), as presented in figure 3.

Besides the vulnerabilities from the OWASP Top 10, the diagram in figure 11

depicts several related vulnerabilities ranging from general vulnerabilities like error-

prone memory management or insecure credentials44 to web-specific vulnerabilities

44 Insecure credentials are, e.g., passwords that are easily guessable. This can mean that they are
either too short so that a brute-force attack is possible, or too common so that a rainbow-table attack
is effective. Both exploit that brute-force credential guessing is possible, either on stolen password
hashes (in case they are not hashed with an up-to-date cryptographic hash function and salted) or
on web applications that apply no means to restrict credential guessing attempts. (cf. lower right of
figure 11)



An Ontology for Secure Web Applications 21

Legend Web Vulnerabilities

Vulnerability

Threat

mayBeCausedBy

mayExploitVs

labeled links

password database not properly hashed and salted

insufficient logging and accountability

Number in
OWASP Top 10
of 2013

unvalidated redirects and forwards

provide input in a way to be executed

exploit missing forensic possibilities

missing function level access control

memory management vulnerability

insufficient access control logic

cross-site request forgery (CSRF)

hardcoded function access control

insufficient control-flow integrity

credential guessing not restricted

insecure direct object references

rainbow-table / dictionary attack

improper error handling

provide JavaScript code in a
way to be executed

distributed denial-of-service
attack (DDoS)

detectability = easy
exploitability = average
names = "XSS"
prevalence = widespread
technicalImpacts = moderate

cross-site scripting (XSS)

using components with
known vulnerabilities

security misconfiguration

detectability = average
exploitability = average
prevalence = widespread
technicalImpacts = severe

broken authentication
and session management

insufficient anti-automation

expose time- or resource-
intensive functionality

redirect to malicious page
detectability = average
exploitability = easy
prevalence = common
technicalImpacts = severe

injection

man-in-the-middle attack

no or weak cryptography

unnoticeably launch
action within a page

sensitive data exposure

insufficient user privacy

circumventing DRM

sessionIDs
exposed in URL

sessionID not
renewed after login

SQL injectionunvalidated input

privilege escalation

insecure credentials

CAPTCHA solver

program logic flaw

brute-force attack

concurrency flaws

outdated software

session hijacking

sessionIDs do
not timeout

buffer overflow

session fixation

race condition
reflected XSS

path traversal

Vulnerability

cryptanalysis

file inclusion

clickjacking

2

3

5

1

8

9

10

7

6

4

analog hole

stored XSS

Threat

kindOf

belongsTo

kindOf

kindOf

kindOf

kindOf

belongsTo

kindOf

kindOf

kindOf

belongsTo

kindOfkindOf

kindOf

uses

kindOf

kindOf

Fig. 11. SecWAO Vulnerabilities

like clickjacking45 or cross-site-scripting. Depending on the configuration of a con-

crete asset, some vulnerabilities, like weak credentials, can only be exploited in

combination with others.

For us, attacks are threats that become reality for a concrete asset. In practice,

threats and attacks often share the same name, as e.g., the threat of a brute-force

attack. In [HSD07, figure 4], a threat classification is provided that uses the terms

45 A web page is vulnerable to clickjacking if an attacker can hide it by layers with arbitrary
contents to trick users into clicking on these layers and thus involuntarily interact with the hidden
web page. [OWA14a]



22 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

gain page editors' permissions

gain web user permissions privilege escalationbrute-force attack

deface websiteuses

uses

uses uses

Fig. 12. A sequence of threats

‘threat’ and ‘attack’ interchangeably. The authors of [FE09] differentiate between

“low level threats” and “top level threats”. The former correspond to our definition

of threats, the latter is the counterpart to what we express positively as security

property (e.g., data disclosure – confidentiality).

Successful attacks can give rise to further vulnerabilities, as an attacker can use

a found out password to search for vulnerabilities that are not exploitable from the

outside. As the class Threat descends from Method, the roles uses, steps, extends,

etc., can be used. Figure 12 shows an example of a sequence of threats that could

become reality so that in the end a set of web pages are defaced. In this way, attack

trees [Sch99]46 can be constructed. Such trees can grow exponentially47, as threats

depend on assets: storing illegal data might be a huge threat for servers with plenty

of storage, whereas misconfiguring nuclear power plants might be less relevant for

average server administrators.

With instances of SecEval’s Context model, we can also represent relations of

methods and notations. For example, we modeled an overview of current web appli-

cation security testing tools. The interested reader can download48 all models in the

MagicDraw [No 15] or XMI [Obj05] format.

5 Conclusion

In this paper we have presented a novel ontology, namely SecWAO, for the area of

secure web applications. The aim is to make web system developers aware of security

issues and give hints how to secure their systems. To our knowledge, SecWAO is the

first ontology that provides a systematic overview of the domain of secure web ap-

plications. It is based on the general Security Context model of SecEval that defines

generic concepts like security property, threat, vulnerability, and asset and relates

them with mechanisms like method, notation, or tool. In SecWAO we instantiate

these elements, e.g., cryptography, input validation, authentication, session manage-

ment, authorization, logging, error handling, and configuration management are some

instances of security-related methods.

In [NVB+13], Neuhaus et al. state that the first question to be asked when deal-

ing with an ontology is: “Can humans understand the ontology correctly?”. According

to our experience, SecWAO reaches this goal due to its clear structure and its com-

mon terminology. So far, we have used SecWAO in two ways: First, we structured a

tutorial about practical IT-Security for master students according to SecWAO in the

46 Although the term “attack tree” is widely used, the term “threat tree” would be more appropriate,
as there is no need for attackers to exploit all theoretical possibilities.
47 The growth of the ontology is a reason why SecWAO will never be completely finished; aside from
the fact that the state of the art changes over time.
48 SecEval and SecWAO. http://www.pst.ifi.lmu.de/~busch/SecEval/

http://www.pst.ifi.lmu.de/~busch/SecEval/


An Ontology for Secure Web Applications 23

winter term 2014/2015. Zooming into SecWAO’s UML diagrams on the slides allowed

giving further explanations without losing track of the context. The students acknowl-

edged the helpfulness of SecWAO for studying, although they noted that readability

naturally depends on a projector with high resolution and a large projection surface.

Second, we integrated SecWAO into the UML-based Web Engineering approach

(UWE) [LMU15]. The UWE notation is defined using the UML profile mechanism

and SecWAO allowed us to systematically establish UML stereotypes and tags for

modeling secure web applications. As a result, UWE enables developers to document

most important security design decisions in a graphical way. We expect that this

structured and concise documentation facilitates the development and maintenance

of web applications, in particular in the case of changes in the developer team.

By using SecWAO combined with UWE in future work, we aim at making se-

curity issues to first class citizens of web development and at supporting a secure

web development life cycle where security issues are considered from the beginning

and in all development phases: during requirements elicitation assets are determined

and relevant security properties are chosen; at design time appropriate methods for

ensuring the required security properties are selected, whereas other methods nota-

tions and tools are chosen in all phases; e.g., in the testing phase security engineers

typically decide which tools are used for penetration testing. Finally, security of web

applications is a dynamic field; every year there are new threats, new vulnerabilities

and new security methods. In order to remain useful, SecWAO will have to relate

these new aspects and it would also be worthwhile to integrate SecWAO into one of

the general security ontologies. In the future, it may also be interesting to compare

previous versions of SecWAO to analyze how the domain of web applications evolves

over time.



24 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

References

[A. 11] A. Barth. HTTP State Management Mechanism. Version 1.2. Specification,
Internet Engineering Task Force (IETF), 2011. URL: https://tools.ietf.org/
html/rfc6797.

[BBB+85] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz,
E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner, B. Möller,
F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H. Wössner. The
Munich Project CIP, Volume I: The Wide Spectrum Language CIP-L, volume
183 of LNCS. Springer, 1985. doi:10.1007/3-540-15187-7.

[BBD+81] F. L. Bauer, M. Broy, W. Dosch, R. Gnatz, B. Krieg-Brückner, A. Laut,
M. Luckmann, T. Matzner, B. Möller, H. Partsch, P. Pepper, K. Samelson,
R. Steinbrüggen, M. Wirsing, and H. Wössner. Programming in a wide spec-
trum language: A collection of examples. Science of Computer Programming,
1(1-2):73–114, 1981. doi:10.1016/0167-6423(81)90006-X.

[BEHS12] K. Beckers, S. Eicker, M. Heisel, and W. Schwittek. NESSoS Deliverable D5.2 –
Identification of Research Gaps in the Common Body of Knowledge, 2012. URL:
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D5.2.pdf.

[Bis02] M. Bishop. Computer Security: Art and Science. Addison-Wesley Professional,
1st edition, 2002.

[BJ95] M. Broy and S. Jähnichen, editors. KORSO - Methods, Languages, and Tools
for the Construction of Correct Software, volume 1009 of LNCS. Springer, 1995.

[BK80] M. Broy and B. Krieg-Brückner. Derivation of invariant assertions during pro-
gram development by transformation. ACM Transactions on Programming Lan-
guages and Systems, 2(3):321–337, 1980. doi:10.1145/357103.357108.

[BKW14a] M. Busch, N. Koch, and M. Wirsing. SecEval: An Evaluation Framework for
Engineering Secure Systems. In Proceedings of Modellierung, volume P-225 of
LNI, pages 337–352, 2014.

[BKW14b] M. Busch, N. Koch, and M. Wirsing. Systematic Evaluation of Engineering Ap-
proaches for Secure Software and Systems. In M. Heisel, W. Joosen, J. Lopez, and
F. Martinelli, editors, Advances in Engineering Secure Future Internet Services
and Systems, number 8431 in LNCS State-of-the-Art-Surveys, pages 234–265.
Springer, 2014. doi:10.1007/978-3-319-07452-8_10.

[BLVG+08]C. Blanco, J. Lasheras, R. Valencia-Garcia, E. Fernandez-Medina, A. Toval, and
M. Piattini. A systematic review and comparison of security ontologies. In Third
International Conference on Availability, Reliability and Security, 2008. ARES
08, pages 813–820, 2008. doi:10.1109/ARES.2008.33.

[BMPW86] M. Broy, B. Möller, P. Pepper, and M. Wirsing. Algebraic implementations
preserve program correctness. Science of Computer Programming, 7(1):35–53,
1986. doi:10.1016/0167-6423(86)90004-3.

[BSS11] D. Basin, P. Schaller, and M. Schläpfer. Applied Information Security: A Hands-
on Approach. Springer, 2011. doi:10.1007/978-3-642-24474-2.

[BSW06] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on
computational diffie-hellman. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
editors, Public Key Cryptography - PKC 2006, volume 3958 of LNCS, pages 229–
240. Springer, 2006. doi:10.1007/11745853_15.

[C+14] S. A. Chun et al. iSecure Lab, 2014. URL: http://cis.csi.cuny.edu/~project/
iSecure/.

[CBK15] CBK. Common Body of Knowledge, 2015. URL: http://nessos-project.eu/
cbk.

[Cen14] Cenzic. Application vulnerability trends report. Technical report, Cen-
zic, 2014. URL: http://www.cenzic.com/downloads/Cenzic_Vulnerability_

Report_2014.pdf.
[DDN03] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Review,

45(4):727–784, 2003. doi:10.1137/S0036144503429856.
[DKF+03] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
http://dx.doi.org/10.1007/3-540-15187-7
http://dx.doi.org/10.1016/0167-6423(81)90006-X
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D5.2.pdf
http://dx.doi.org/10.1145/357103.357108
http://dx.doi.org/10.1007/978-3-319-07452-8_10
http://dx.doi.org/10.1109/ARES.2008.33
http://dx.doi.org/10.1016/0167-6423(86)90004-3
http://dx.doi.org/10.1007/978-3-642-24474-2
http://dx.doi.org/10.1007/11745853_15
http://cis.csi.cuny.edu/~project/iSecure/
http://cis.csi.cuny.edu/~project/iSecure/
http://nessos-project.eu/cbk
http://nessos-project.eu/cbk
http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf
http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf
http://dx.doi.org/10.1137/S0036144503429856


An Ontology for Secure Web Applications 25

web services: Annotation and matchmaking. In D. Fensel, K. Sycara, and J. My-
lopoulos, editors, The Semantic Web - ISWC 2003, volume 2870 of LNCS, pages
335–350. Springer, 2003. doi:10.1007/978-3-540-39718-2_22.

[DKF05] G. Denker, L. Kagal, and T. Finin. Security in the semantic web using OWL.
Information Security Technical Report, 10(1):51 – 58, 2005. doi:10.1016/j.

istr.2004.11.002.
[DVOW92] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authen-

ticated key exchanges. Designs, codes and cryptography, 2(2):107–125, 1992.
doi:10.1007/BF00124891.

[EYZ10] G. Elahi, E. Yu, and N. Zannone. A vulnerability-centric requirements engi-
neering framework: analyzing security attacks, countermeasures, and require-
ments based on vulnerabilities. Requirements Engineering, 15(1):41–62, 2010.
doi:10.1007/s00766-009-0090-z.

[FE09] S. Fenz and A. Ekelhart. Formalizing information security knowledge. In
Proceedings of the 4th International Symposium on Information, Computer,
and Communications Security, ASIACCS ’09, pages 183–194, New York, NY,
USA, 2009. ACM. URL: http://securityontology.securityresearch.at/,
doi:10.1145/1533057.1533084.

[FFL13] D. Feledi, S. Fenz, and L. Lechner. Toward web-based information security knowl-
edge sharing. Information Security Technical Report, 17(4):199–209, 2013. Spe-
cial Issue: ARES 2012 7th International Conference on Availability, Reliability
and Security. doi:10.1016/j.istr.2013.03.004.

[GB02] A. Gómez-Pérez and V. R. Benjamins, editors. Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web, 13th International
Conference, EKAW 2002, Spain, 2002, Proceedings, volume 2473 of LNCS.
Springer, 2002.

[Hes14] W. Hesse. Ontologie und Weltbezug - vom philosophischen Weltverständnis zum
Konstrukt der Informatik (German). Informatik Spektrum, 37(4):298–307, 2014.
doi:10.1007/s00287-014-0795-3.

[HSD07] A. Herzog, N. Shahmehri, and C. Duma. An ontology of information secu-
rity. In International Journal of Information Security and Privacy, pages 1–
23, 2007. URL: https://www.ida.liu.se/~iislab/projects/secont/, doi:

jisp.2007100101.
[ISO13] ISO/IEC. 27001: Information technology - Security techniques - Information

security management systems - Requirements. Technical report, International
Organization for Standardization (ISO) and International Electrotechnical Com-
mission (IEC), 2013.

[J. 12] J. Hodges and C. Jackson and A. Barth. HTTP Strict Transport Security
(HSTS). Specification, Internet Engineering Task Force (IETF), 2012. URL:
https://tools.ietf.org/html/rfc6797.

[K+15] M. Krötzsch et al. Semantic web, 2015. URL: http://semanticweb.org.
[Kas14] Kaspersky. Kaspersky security bulletin. Technical report,

Kaspersky, 2014. URL: http://securelist.com/files/2014/12/

Kaspersky-Security-Bulletin-2014-EN.pdf.
[KB97] B. Krieg-Brückner. Seven Years of COMPASS, 1997. URL: http:

//www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/

completed_projects/compass/index_e.htm.
[KB+04] Krieg-Brückner et al. MMiSS - MultiMedia Instruction in Safe Systems, 2004.

URL: http://www.mmiss.de/.
[KFL+04] B. Krieg-Brückner, U. Frese, K. Lüttich, C. Mandel, T. Mossakowski, and

R. J. Ross. Specification of an Ontology for Route Graphs. In C. Freksa,
M. Knauff, B. Krieg-Brückner, B. Nebel, and T. Barkowsky, editors, Spatial
Cognition IV: Reasoning, Action, Interaction, International Conference Spa-
tial Cognition, volume 3343 of LNCS, pages 390–412. Springer, 2004. doi:

10.1007/978-3-540-32255-9_22.

http://dx.doi.org/10.1007/978-3-540-39718-2_22
http://dx.doi.org/10.1016/j.istr.2004.11.002
http://dx.doi.org/10.1016/j.istr.2004.11.002
http://dx.doi.org/10.1007/BF00124891
http://dx.doi.org/10.1007/s00766-009-0090-z
http://securityontology.securityresearch.at/
http://dx.doi.org/10.1145/1533057.1533084
http://dx.doi.org/10.1016/j.istr.2013.03.004
http://dx.doi.org/10.1007/s00287-014-0795-3
https://www.ida.liu.se/~iislab/projects/secont/
http://dx.doi.org/jisp.2007100101
http://dx.doi.org/jisp.2007100101
https://tools.ietf.org/html/rfc6797
http://semanticweb.org
http://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-EN.pdf
http://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-EN.pdf
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/completed_projects/compass/index_e.htm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/completed_projects/compass/index_e.htm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/completed_projects/compass/index_e.htm
http://www.mmiss.de/
http://dx.doi.org/10.1007/978-3-540-32255-9_22
http://dx.doi.org/10.1007/978-3-540-32255-9_22


26 International Journal of Software and Informatics, Vol.xx, No.xx, January 2015

[KHL+02] B. Krieg-Brückner, D. Hutter, A. Lindow, C. Lüth, A. Mahnke, E. Melis,
P. Meier, A. Poetzsch-Heffter, M. Roggenbach, G. Russell, J. Smaus, and
M. Wirsing. MultiMedia Instruction in Safe and Secure Systems. In M. Wirsing,
D. Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Development
Techniques, 16th International Workshop, WADT, volume 2755 of LNCS, pages
82–117. Springer, 2002. doi:10.1007/978-3-540-40020-2_4.

[KLK07] A. Kim, J. Luo, and M. Kang. Security ontology to facilitate web service de-
scription and discovery. In S. Spaccapietra, P. Atzeni, F. Fages, M.-S. Hacid,
M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J. Trujillo, and I. Zaihrayeu,
editors, Journal on Data Semantics IX, volume 4601 of LNCS, pages 167–195.
Springer, 2007. doi:10.1007/978-3-540-74987-5_6.

[LH05] S. Lipner and M. Howard. The Trustworthy Computing Security Development
Lifecycle. Developer Network - Microsoft, 2005. URL: http://msdn.microsoft.
com/en-us/library/ms995349.aspx#sdl2_topic2_5.

[LMU15] LMU. Web Engineering Group. UWE Website, 2015. URL: http://uwe.pst.
ifi.lmu.de/.

[M+] Mossakowski et al. IFIP WG 1.3 - Foundations of System Specification. URL:
http://ifipwg13.informatik.uni-bremen.de/.

[No 15] No Magic Inc. Magicdraw, 2015. URL: http://www.magicdraw.com/.
[NVB+13] F. Neuhaus, A. Vizedom, K. Baclawski, M. Bennett, M. Dean, M. Denny,

M. Grüninger, A. Hashemi, T. Longstreth, L. Obrst, S. Ray, R. Sriram,
T. Schneider, M. Vegetti, M. West, and P. Yim. Towards ontology evalua-
tion across the life cycle: The ontology summit 2013. volume 8, pages 179–
194. IOS Press, 2013. URL: http://ontolog.cim3.net/cgi-bin/wiki.pl?

OntologySummit2013_Communique.
[O+15] M. Odersky et al. Scala, 2015. URL: http://scala-lang.org/.
[OAS05] OASIS. eXtensible Access Control Markup Language (XACML) Ver-

sion 2.0, 2005. URL: http://docs.oasis-open.org/xacml/2.0/access_

control-xacml-2.0-core-spec-os.pdf.
[Obj05] Object Management Group. XMI 2.1. Specification, OMG, 2005. URL: http:

//www.omg.org/spec/XMI/.
[Obj11] Object Management Group. Unified Modeling Language. Specification, OMG,

2011. URL: http://www.omg.org/spec/UML/.
[Ora15] Oracle. Java, 2015. URL: http://www.java.com/.
[OWA13] OWASP Foundation. OWASP Top 10 – 2013, 2013. URL: http://owasptop10.

googlecode.com/files/OWASPTop10-2013.pdf.
[OWA14a] OWASP Foundation. Clickjacking, 2014. URL: https://www.owasp.org/index.

php/Clickjacking.
[OWA14b] OWASP Foundation. Cross-Site Request Forgery (CSRF) Prevention Cheat

Sheet, 2014. URL: https://www.owasp.org/index.php/Cross-Site_Request_
Forgery_(CSRF)_Prevention_Cheat_Sheet.

[OWA14c] OWASP Foundation. List of useful HTTP headers, 2014. URL: https://www.
owasp.org/index.php/List_of_useful_HTTP_headers.

[OWA14d] OWASP Foundation. OWASP Risk Rating Methodology, 2014. URL: https:
//www.owasp.org/index.php/OWASP_Risk_Rating_Methodology.

[OWA15a] OWASP Foundation. OWASP Data Validation, 2015. URL: https://www.

owasp.org/index.php/Data_Validation.
[OWA15b] OWASP Foundation. Session fixation, 2015. URL: https://www.owasp.org/

index.php/Session_fixation.
[OWA15c] OWASP Foundation. SQL Injection Prevention Cheat Sheet, 2015. URL: https:

//www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet.
[OWA15d] OWASP Foundation. User Privacy Protection Cheat Sheet, 2015. URL: https:

//www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet.
[Pau13] J. Pauli. The Basics of Web Hacking: Tools and Techniques to Attack the Web.

Syngress, 1 edition, 2013.

http://dx.doi.org/10.1007/978-3-540-40020-2_4
http://dx.doi.org/10.1007/978-3-540-74987-5_6
http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic2_5
http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic2_5
http://uwe.pst.ifi.lmu.de/
http://uwe.pst.ifi.lmu.de/
http://ifipwg13.informatik.uni-bremen.de/
http://www.magicdraw.com/
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique
http://scala-lang.org/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/UML/
http://www.java.com/
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet


An Ontology for Secure Web Applications 27

[PHP14] PHP. Scripting Language, 2014. URL: http://www.php.net/.
[PP06] C. P. Pfleeger and S. L. Pfleeger. Security in Computing, 4th Edition. Prentice

Hall, 4th edition, 2006.
[Rei14] M. Reithmayer. Tool support for a knowledge base for secure software engineer-

ing. Master’s thesis, Ludwig-Maximilians-Universität München, 2014.
[RWT14] RWTH Aachen University. i* notation, 2014. URL: http://istar.rwth-aachen.

de.
[Sch99] B. Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999. URL: https:

//www.schneier.com/paper-attacktrees-ddj-ft.html.
[She12] M. Shema. Hacking Web Apps: Detecting and Preventing Web Application Se-

curity Problems. Syngress, 1 edition, 2012.
[SK13] P. Salini and S. Kanmani. Ontology-based representation of reusable security

requirements for developing secure web applications. Int. J. Internet Technol.
Secur. Syst., 5(1):63–83, 2013. doi:10.1504/IJITST.2013.058295.

[SSCW12] A. Souag, C. Salinesi, and I. Comyn-Wattiau. Ontologies for security require-
ments: A literature survey and classification. In M. Bajec and J. Eder, ed-
itors, Advanced Information Systems Engineering Workshops, volume 112 of
Lecture Notes in Business Information Processing, pages 61–69. Springer, 2012.
doi:10.1007/978-3-642-31069-0_5.

[Sym14] Symantec. Internet security threat report. Technical report, Syman-
tec, 2014. URL: http://www.symantec.com/de/de/security_response/

publications/threatreport.jsp.
[T. 08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol. Ver-

sion 1.2. Specification, Internet Engineering Task Force (IETF), 2008. URL:
http://tools.ietf.org/html/rfc5246.

[The15] The MITRE Corporation. Common Vulnerabilities and Exposures List (CVE),
2015. URL: https://cve.mitre.org.

[Tia14] J. Tiago. Angriffsrisiken minimieren mit Security-Headern (German). Heise IX
Kompakt Security, (4/2014):64–53, 2014.

[UG96] M. Uschold and M. Gruninger. Ontologies: principles, methods and applications.
Knowledge Eng. Review, 11(2):93–136, 1996. doi:10.1017/S0269888900007797.

[vTJ11] H. van Tilborg and S. Jajodia, editors. Encyclopedia of Cryptography and Secu-
rity. Springer, 2011. doi:10.1007/978-1-4419-5906-5.

[W+15] Wikimedia Foundation et al. Wikidata, 2015. URL: https://www.wikidata.org.
[W3C] W3C Recommendation. W3C Web Ontology Language (OWL). URL: http:

//www.w3.org/2001/sw/wiki/OWL.
[W3C14] W3C Last Call Working Draft. Content Security Policy Level 2, 2014. URL:

http://www.w3.org/TR/CSP2/.
[WCG13] A. Wali, S. A. Chun, and J. Geller. A bootstrapping approach for developing a

cyber-security ontology using textbook index terms. In Eighth International Con-
ference on Availability, Reliability and Security (ARES), pages 569–576, 2013.
doi:10.1109/ARES.2013.75.

[Y+15] E. Z. Yang et al. HTML purifier – standards-compliant HTML filtering, 2015.
URL: http://htmlpurifier.org/.

All online resources were accessed in January 2015.

http://www.php.net/
http://istar.rwth-aachen.de
http://istar.rwth-aachen.de
https://www.schneier.com/paper-attacktrees-ddj-ft.html
https://www.schneier.com/paper-attacktrees-ddj-ft.html
http://dx.doi.org/10.1504/IJITST.2013.058295
http://dx.doi.org/10.1007/978-3-642-31069-0_5
http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
http://tools.ietf.org/html/rfc5246
https://cve.mitre.org
http://dx.doi.org/10.1017/S0269888900007797
http://dx.doi.org/10.1007/978-1-4419-5906-5
https://www.wikidata.org
http://www.w3.org/2001/sw/wiki/OWL
http://www.w3.org/2001/sw/wiki/OWL
http://www.w3.org/TR/CSP2/
http://dx.doi.org/10.1109/ARES.2013.75
http://htmlpurifier.org/

	1 Introduction
	2 Related Work
	3 The underlying ``Security Context model''
	4 SecWAO: Secure Web Applications' Ontology
	4.1 Overview of SecWAO by example
	4.2 Security Properties
	4.3 Methods
	4.4 Vulnerabilities and Threats

	5 Conclusion
	References

