
ON THE ALGEBRAIC SPECIFICATION OF NONDETERMINISTIC

PROGRAMMING LANGUAGES *)

,,)
M. Broy, M. Wirsing

Technische Universit~t MUnchen, Institut fur Informatik

ArcisstraBe 21, D-8000 MUnchen 2

Abstract

Different semantic models for a nondeterministic programming language are defined,

analysed, and compared in the formal framework of algebraic specifications of pro-

gramming languages by abstract types. Four abstract types are given representing

choice (%rratic") nondeterminism~ backtrack {"d~monic'~ nondeterminism~ unbounded

("angelic") nondeterminism and loose nondeterminism. The classes of algebras of

these types represent classes of semantic models. A comparison of these classes of

semantic models shows the connections and differences between the four different

concepts of nondeterminism as fbund in programming languages.

1. Introduction

The concepts of nondeterminism and nondeterminacy have found their way into pro-

gramming languages only during the middle of the last decade, although McCarthy in

his pioneering paper /McCarthy 63/ already introduced an "ambiguity operator" and

Floyd in /Floyd 67/ suggested nondeterministic programs for the implicit formulation

of backtrack programs.

Recently the growing interest in rigorous methods for formal specification and pro-

gram development and numerous attempts to define a formal semantics for concurrent

programming languages has led to intensive investigations in the theory and formal

foundations of nondeterminism. However, a careful study of the different approaches

indicates, that not only the formal description methods are different, but there are

actually different concepts described, although the differences are often rather

*) This work was carried out within the Sonderforschungsbereich 49 - Programmier-

technik - Munich
~) Present address: Department of Computer Science, University of Edinburgh, Edin-

burgh EH9 3JZ

183

sophisticated but nevertheless of great importance. Strictly speaking essentially

("extensionally") different semantic models can be given for nondeterministic pro-

gramming languages reflecting the different concepts of nondeterminism.

Recent studies have shown, that algebraic methods allow the specification of pro-

gramming languages by abstract (data) types in a short, flexible way (cf./Broy,

Wirsing 80a/). There the context free syntax corresponds to the signature (the term-

algebra represents the set of syntactically correct programs), the context conditions

(sometimes called "static semantics") are expressed by particular definedness predi-

cates (restricting the term algebra), and the semantics is specified by a number of

(conditional) equations. Then each model of that type can be considered as a parti-

cular semantic model of the programming language. Due to the termination problem of

partial recursive functions such an algebraic specification generally includes se-

mantic models where optimal or even maximal fixed points are associated with recur-

sive definitions. The minimality property of least fixed points, however, can be con-

veniently expressed by weakly terminal models, the existence of which is guaranteed

under certain (syntactic) conditions (cf. /Broy, Wirsing 8Oh/).

The class of extensionally equivalent models of the type containing the weakly

terminal models comprises all possible semantic models which specify the semantics

of least fixed points (syntactic, operational, algorithmic and mathematical models).

In particular the ini t ia l model of the type lies in this class which forms a complete

lattice of models (in the usual sense, cf. /Wirsing, Broy 80/).

In this formal framework i t is also possible to discuss the semantic models of non-

deterministic (applicative or procedural) programming languages. The various con-

cepts of nondeterminism such as backtrack nondeterminism versus choice nondeter-

minism (cf. /Broy et al. 80/, /Kennaway, Hoare 80/) as well as loose versus tight

nondeterminism (cf. /Park 80/) may be discussed conveniently in the algebraic

approach by the particular classes of models of a nondeterministic programming

language characterized by the resp. semantic equations.

We show that backtrack nondeterminism, unbounded nondeterminism and choice non-

determinism admit terminal semantics. The weakly terminal models of backtrack

nondeterminism as well as of unbounded nondeterminism are properly weaker than those

of choice nondeterminism. In the Cpartial) i n i t i a l semantics of both forms of non-

determinism nondeterministic statements differ only in their evaluation, while the

induced equalities between them are the same.

164

Loose nondeterminism does not allow terminal or i n i t i a l semantics, but only minimal

models which correspond to al l possible deterministic and nondeterministic least

fixed point semantics which implement nondeterministic statements. The weakly termi-

nal model of backtrack nondeterminism is one of these minimal models. By introducing

an "implementation" relation E l we can structurize these minimal models in such a

way that the ~ I - minimal models are exactly the deterministic least fixed point

implementations. The weakly terminal models of choice nondeterminism are optimal in

the following sense: They are the weakest models which are ~ I - greater than al l

I - minimal models.

F ina l l y we show that the so-called Egl i -Mi lner Ordering is a consequence of the

speci f icat ion using weak homomorphisms and thus is "natural" in the weakly terminal

models.

In fact, the goal of this case study is twofold: First , we want to demonstrate how

algebraic methods can be used as a powerful, f lexible tool for the formulation and

analysis of semantic specifications. Second, we give an attempt to c lar i fy , unify,

and compare several notions of nondeterminism with rather sophisticated differences

as found in the l i terature.

We demonstrate our approach by means of abstract data types specifying the sort

sta of nondeterministic statements. The types define procedural programming langua-

ges very similar to Dijkstra's language of guarded commands. We investigate several

closely related versions:

- a type AN the weakly terminal model of which corresponds to unbounded ("angelic")

nondeterminism (this type resembles to the wlp-calculus definit ion of Dijkstra).

- a type BN the weakly terminal model of which corresponds to backtrack ("demonic")

nondeterminism (this type resembles to the wp-calculus definit ion of Dijkstra),

- a type CN the weakly terminal model of which corresponds to choice ('~rratic")

nondeterminism. Every model of CN implements a model of BN in a "natural" way~)

- a type LN corresponding to loose nondeterminism. For this type there does not

exist a weakly terminal model. However al l models of AN, BN as well as al l

models of CN are models of LN, too. Each minimal model of LN represents the

mathematical semantics of a particular (possibly deterministic) programming

language.

*)This type resembles to the wp/wlp-calculus definit ion of Dijkstra,

165

2. Basic Def in i t ions

Before we define one type we b r i e f l y give the most important def in i t ions (fo r a

complete de f in i t i on see /Broy, Wirsing 80a/). We consider hierarchical abstract

types with primitive subtypes and finitely generated partial heterogeneous

E-algebras as models; i .e . part ia l heterogeneous E-algebras without proper sub-

algebras. Between two E-algebras A und B a family m of total mappings is

cal led (par t ia l) Z -homomorphism (c f . /Gr~tzer 68/) , i f for a l l operations f

~(fA(x l Xn)) = { undefinedfB(~(Xz) ~(Xn)) i f otherwisefA(xl 'Xn) is defined

and i f

fA(x I Xn) defined ~ fB(~(Xl) ~(Xn)) defined

A model I of T is cal led i n i t i a l , i f for a l l models A of T there

exists a unique homomorphism ~ : I ~A . An i n i t i a l model I is minimally defined,

i .e . every term t which is undefined in some model of T is undefined in I , too.

The propert ies of homomorphisms for total algebras are generalized by the fol lowing

notion (cf. /Broy, Wirsing 8Oh/).

A family ~ of par t ia l mappings is cal led weak Z -homomorphism, i f for al l

operations f
i fB(~(Xl) ~(Xn)) i f fB(~(x I) ~(Xn)) is defined

~(fA(x l Xn)) = undefined otherwise

I f such a weak Z-homomorphism exists, then B is cal led weaker than A . A

mapping which is both a par t ia l Z-homomorphism and a weak z-homomorphism is cal led

a strong Z-homomorphism,

In order to describe observable equivalence we need a notion of termina l i ty for

par t ia l algebras. Let I be an i n i t i a l model of T and consider the class

W =def {AI there exists a s t r o ~ z-homomorphism ~ : I ~ A}. Then a model Z

of T is said to be weakly terminal i f Z is strongly terminal in W, i .e .

for a l l A E W there exists a strong Z-homomorphism m : A ~ Z . The weakly

terminal models as well as al l elements of W are minimally defined.

Let us f i x a single model P' of the pr imi t ive subtype P of T and consider

only the models of T which are extensions of P'. Then every two models A and

B for which a stron~ ~-homomorphism ~ : A ~ B or ~ : B ~ A exists are

extensionally equivalent, i .e . for every function f with range in P and every

~66

nonprimit ive term t we have f (. . . . t)A = f (. . . . t)B. In pa r t i cu la r ,

W forms a class of extensional ly equivalent models. Every Z-homomorphism

between two extens ional ly equivalent models is a strong z-homomorphism. I f C is

a class of extensional ly equivalent models then a strongly i n i t i a l (terminal)

model A E C is called (C-)extensionally in i t ia l (terminal). For example, the

in i t ia l models of T are W-extensionally in i t ia l and the weakly terminal models

are W-extensionally terminal (cf. figure I).

The extensional equivalence leads to another de f i n i t i on of te rmina l i t y . A model

R of T is cal led reachable , i f fo r a l l models A of T there ex is ts an

extensional ly equivalent model B of T such that there is a weak z-homomor-

phism ~ : B ~ R . Every reachable model is minimally def ined, T is reaoh~ly

terminal i f i t is st rongly terminal in the class of a l l reachable models.

I f an i n i t i a l model ex is ts , then every reachably terminal model is weakly terminal

(but in general not vice versa).

A model A of a h ierarchical abstract type is cal led f u l l y abstract. (c f . /Mi lner

77/) i f for every pai r of terms t l , t2 of nonprimit ive sort t l A = t2 A i f f fo r

every pr im i t i ve context K[x] : K [t l] A = K[t2] ; a pr imi t ive context K[x] fo r terms

of sort s is a term K[x] wi th the only free var iable x such that for every term

t of sort s , K[t] is a term of p r im i t i ve sort .

Obviously (c f . /Broy, Wirsing 80b/) a f u l l y abstract model is minimal wi th respect

to strong homomorphisms. Furthermore, i f there ex is ts a f u l l y abstract , minimally

defined model of a type and a weakly terminal model, then both are isomorphic. Both

notions of minimal f u l l abstractness and weak te rm ina l i t y therefore capture the

notion of observable equal i ty or funct ional equivalence. This means that in a f u l l y

abstract model two terms are considered to be equal, i f f a l l observable resul ts of

appl icat ions of th is term (the resu l t of th is term in a l l p r im i t i ve contexts) are

equal. Then the two terms are cal led v is ib l y equivalent,

3. The Abstract Type o f Choice Non determinism

We define an abstract type comprising the fo l lowing pr imi t i ve sorts:

dora ,

yaP ,

pros,,

exp ,

the sort of a semantic objects (inc lud ing the t ru th values t t and f f and

the i r charac ter is t i c operations) with an equal i ty operation ~ ,

the sort of i den t i f i e r s fo r programming var iables,

the sor t of i d e n t i f i e r s for procedures,

the sort of ar i thmet ic expressions over var together with a to ta l evalua -

t ion funct ion eval : exp ~ d om ' , which y ie lds error for free i den t i f i e r s

(where error is a defined constant of dom). We denote by e l [e2 /v] the

167

subst i tut ion of v in el by e2.

bexp, the set of boolean expressions (also with evaluation function eval) .

For s imp l i c i t y we may assume that these sorts are given by abstract types, which are

monomo~hic, i . e , for which up to isomorphic only one model ex is ts . Equivalently

we might assume to take always i n i t i a l (or terminal) models of the pr imi t ive sub-

type (cf . /Broy, Wirsing 80b/).

As the only nonprimit ive sort we specify the sort

statements with the eon~tructorfunctions:

nop. abort : ~ sta,

assign : var x exp ~ sta,

i f : bexp x st__aa x sta

semi, choice : sta x sta ~ s ta ,

le t rec : proc x s t a ~ sta,

ca l l : proc ~ st a,

s ta ,

sta of nondeterministic

As semantic functions we use

with the meaning

F i rs t we specify

loops : sta ~ { t t , f f }

elem : sta x exp × dom ~ { t t , f f }

loops(S) = f f i f f the execution of S cannot lead to a non-

terminating computation

elem(S,e,x) = t t i f f a f te r the execution of

may be evaluated to x .

a number of semantic equal i t ies for statements:

S the expression e

(STA)

semi(abort,S) = abort = semi(S,abort),

semi(nop,S) = S = semi(S,nop),

semi(semi(S1,S2),S3) = semi(Sl, semi(S2,S3)),

choice(Sl,choice(S2,S3)) = choice(choice(Sl,S2),S3),

letrec(p,S) = S [l e t rec (p ,S) / ca l l (p)] ,

semi(if(b,S1,S2),S3) = if(b,semi(S1,S3), semi(S2,S3)),

semi(assign(v,e), i f (b,S1,S2)) = i f (bEe/v] , semi(assign(v,e),Sl) ,

semi(assign(v,e),S2)),
semi(choice(Si,S2),S3) = choice(semi(Sl,S3), semi(S2,S3)),

semi(Sl,choice(S2,S3)) = choice(semi(Sl,S2), semi(Sl,S3)),

if(b,choice(S1,S2),S3) = choice(i f (b ,Sl ,S3) , i f (b,S2,S3)) ,

if(b,S1,choice(S2,S3)) = choice(i f(b,S1,S2), i f (b ,S l ,S3)) ,
choice(Sl,S2) = choice(S2,Sl),

168

We consider the fo l lowing semantic equations invo lv ing the evaluat ion-operat ions

eval , loops and elem (fo l lowing /Broy, Wirsing 80b/ to specify the definedness
of a term t by DEFINED(t)):

loops(nop) = f f , elem(nop,e,x) = (x ~ eva l (e)) ,

DEFINED(abort), DEFINED(Ietrec(p,S)), DEFINED(if(B,SI,S2)),

eval(b) = t t ~ i f (b,S1,S2) : SI,

eval(b) : f f ~ i f (b ,S l ,S2) = $2,

eval(b) : error ~ i f (b,S1,S2) = abor t ,

loops(semi(S,ass ign(v,e l))) = loops(S),

e lem(semi(S,ass ign(v ,e l)) ,e2,x) = e lem(S,e2 [e l / v] , x) ,
loops(semi(S,ca l l (p))) = f f , e lem(semi(S,ca l l (p)) ,e ,x) = (x ~ e r ro r) ,

DEFINED(semi(SI,S2)), DEFINED(choice(Sl,S2)),

For our choice operation we require

(loops(Sl) : f f ^ loops(S2) = f f) ~ loops(choice(Sl,S2)) = f f

elem(Sl,e,x) : t t ~ elem(choice(S1,S2),e,x) = t t

Let us ca l l th is type CN. Every statement is defined in every model of CN whereas

loops and elem may be par t ia l funct ions. We ind icate the undefinedness of the

expression loops(S) by loops(S) = undefined (analogously fo r e lem(S,e,x)) .

The theorems in /Broy, Wirsing 80a,b/ immediately give the fo l low ing proposi t ion.

Prop:
(1) The type CN is weakly s u f f i c i e n t l y complete and every statement is

defined
(2) The type CN has a reachably terminal model C wi th the fo l low ing

propert ies:
(a) C ~ Ioops(S) E { f f , unde f i ned }

(b) C is a minimal ly defined model:

3 model M : M ~ loops(S) = undefined ~ C ~ loops(S) = undefined

3 model M : M ~ elem(S,e,x) = undefined ~ C~ elem(S,e,x)=undefined

(c) C is a f u l l y abstract model i . e .

C ~ SI = $2

(3)

i f f

and

~- elem(semi(S,S1),e,x) : b

The type CN has an i n i t i a l model

equa l i t y in I C is determined by the equations

I C~ $I = $2 i f f STA F- $1 : $2

fo r a l l b E { t t , f f , u n d e f i n e d } , s t a S, exp e, dom x:

loops(semi(S,Sl)) : b ~ ~loops(semi(S,S2)) = b

Felem(semi(S,S2),e,x) = b

I C which is minimal ly defined. The

STA:

169

Therefore two statements are identical in the weakly terminal model C i f they are

v is ib ly equivalent. From the "minimal definedness"-property we see that the weakly

terminal models are equivalent to least fixed point semantics. The weak homomorphisms

induce exactly the Egli-Milner-ordering (cf. e.g. /Nivat 80/)between semantic models:

P E°P"

Let A, B be models of CN. I f there exists a weak homomorphism from A to B

then for every statement S

S B ~ S A
Eg l i -Mi lner

i . e . for a l l i d e n t i f i e r s y and dom x :

and

B~ elem(S,y,x) = t t

B~ loops(S) = f f :

(A~ loops(S)=ff ^

A ~ elem(S,y,x) = t t

(B~ elem(S,y,x) = t t ~ A~elem(S,y,x) = t t))

The i n i t i a l model I c is minimally defined and I c and C

equivalent , i . e . fo r a l l b E { t t , f f , undefined}
are extensional ly

and

C F loops(S) : b i f f I C F loops(S) = b

C F elem(S,e,x) = b i f f I c F elem(S,e,x) = b

The equa l i t y between two statements in I C is the strong equal i ty : Two statements

are ident ica l in I C i f t he i r equa l i ty is provable from the axioms STA .

The class of minimal ly defined models of CN coincides with the class of reachable

models and forms a complete l a t t i c e w . r . t , to the usual homomorphisms as ordering

re la t ion (c f . /Wirsing, Broy 80/) . The i n i t i a l model I C is i n i t i a i in th is class

whereas the weakly terminal model is terminal. As in /Broy, Wirsing 80b/ one can

define a par t ia l order on the classes of extens ional ly equivalent models by

C1 < C2 i f f there ex is t models MI E Cl and M2 E C2

such that

loops MI and elem MI are "less defined"

than loops M2 and elem M2

where " less defined" re f lec ts the usual ordering on f l a t domains (cf . e.g./Manna 74/).

Then the minimal ly defined models are a minimum in th is ordering. There does not

ex is t a maximum, but every maximal class corresponds to maximal f ixed point semantics

(c f . f igure 1).

170

\ .

\

• - 2 . 3 _

weakly maximal models ," i ~ . , . i
I , " 7

i ' / ° /
\ . t " 1 / \ . . ~ .

\ " " ~/ ," I

\ ",),., - / • / -~<
1 \ , . I , I

\ , o /
.,4 % ,,/ ~ I

?+A-. t
" . ! [//

• / ' I

/ ' t

: t ' t
" t

I 11
t: •

" \ k j . - i
. ..)° ,I

, " ~ . . , > _) e \ ' ° \

\ ' X " ~

"C

min ima l l y def ined
models

. (part ial) homomorphisms

weak homomorphisms

strong homomorphisms

classes C of ex tens i ona l l y

equ iva len t models

Figure I : The structure of CN

In particular, for every minimally defined model M we have

M F loops(S) ¢ t t ,

M ~ loops(S) = f f ~ elem(S,e,x) E { t t , f f } ,

and
M ~ loops(S) : undefined ~ elem(S,e,x) E { t t , undefined}.

According to the def in i t ion of the Egli-Milner ordering as defined for models we

define for nondeterministic statements $1, $2:

171

$1 ~ Egl i -Mi lner S2 i f f

v s ta S:(loops(semi(S,Sl)) : f f ^vee~1~e, dom x :elem(semi(S,Sl),e,x) : elem(semi(S,S2,e,x))

v (loops(semi(S,Sl)) ¢ f f AV ex._pe, domx :elem(semi(S,Sl),e,x) : t t

elem(semi(S,S2),e,x) = t t)

This ordering is used to define a fixed point theory for nondeterministic programs.

In minimally defined models of CN the (functionals associated with) recursive

procedures are continuous wrt. to the Egli-Milner ordering (cf. /Nivat 80/). In

part icular this means that i f elem(S,e,x) is t t for i n f i n i t e l y many x then

loops(S) ~ f f .

4. Backtrack Nondeterminism, Unbounded Nondeterminism and Loose Nondeterminism

Now we specify the further types AN, BN and LN based on the type CN.

type BN =- sort bsta ,

bn : sta ~ bsta ,

belem : bsta × ex.p × .d.°m ~ { t t , f f } ,

bloops: bsta ~ { t t , f f } ,

bloops(bn(S)) = loops(S),

belem(bn(S),e,x) = (not(loops(S)) and

DEFINED(bn(S))

elem(S,e,x)),

endoftype

type AN sort asta ,

an : s ta ~ a.sta,

aelem : asta × e_~ x do___mm ~ { t t , f f } ,

aloops : asta ~ { t t , f f } ,

loops(S) = f f ~ aloops(an(S)) = f f ,

aelem(an(S),e,x) : elem(S,e,x),

loops ($I) = f f ~ aloops(an(choice(SI,S2))) = f f ,

DEFINED(an(S)) en.d ' of type.

Following /Broy, Wirsing 80b/ we use a definedness predicate "DEFINED" to specify

the definedness Qf a l l nQndeterministic statements in the types AN, BN, and LN,

172

type LN ~ sort Ista ,

In : sta ~ Is ta ,

lelem : Is ta × exp × dom ~ { t t , f f } ,

l loops: Ista ~ { t t , f f } ,

loops(S) = f f ~ l loops(In(S)) = f f ,

le lem(In(S) ,e,x) = t t ~ elem(S,e,x) = t t ,

(~) l loops(Is) = f f ~ 3 exp e, dom x : le lem(Is ,e ,x) = t t ,
DEFINED(In(S))

endoftype

Note, that we do not consider the type CN to be part of the types AN, BN and LN

but as hidden. The same technique is applied e.g. in /Hennessy, Plotk in 80/. The

axiom (m) must be required fo r LN but i t holds in minimally defined models of AN,

BN and CN.

The fo l lowing proposit ions give some information about the types BN, AN and

and the i r re la t ionsh ip to CN :

LN

Prop: (1) The type BN is weakly s u f f i c i e n t l y complete and every statement is

defined.

(2) The type BN has a reachably terminal model B with the fo l lowing proper-

t ies

(a) B is a minimally defined, f u l l y abstract model,
(b) for every two closed statements (i . e . statements wi thout non-

i n i t i a l i z e d var iables) Sl, $2: B~ Sl = S2 i f f

C # loops(Sl) = loops(S2) = undefined or C # Sl = $2

(3) For every model N of CN there ex is ts a model M of BN which is

weaker than N .

(4) For every model M of BN there ex is ts a model N of CN such that

M is weaker than N.

(5) The type BN has an i n i t i a l model I B the r e s t r i c t i o n IBISTA of

which (to the constructor funct ions of statements) is isomorphic to

the r es t r i c t i on IISTA of the i n i t i a l model of CN

Therefore the equal i ty between statements is the same in the i n i t i a l models of BN

and CN, whereas according to (2) the weakly terminal model B of BN is properly

weaker than the weakly terminal model C of CN. The "natura l " weak homomorphism

: N ~ M (fo r models N of CN and M of BN) which is defined by

m(sN)=def bn(S)M' ~(l°°psN) =def bl°°psM and ~(elem N) = def belemM

173

is a sur ject ive functor from CN onto BN.

Prop. : (I)

(2)

The type

is defined.

The type AN has a reachably terminal model A

properties

(a)
(b)

AN is weakly s u f f i c i e n t l y complete and every statement

with the fol lowing

A is minimally defined and f u l l y abstract;

for every two closed statements (i . e . statements without non in i t ia -

l ized variables) $ I , $2 :

A ~ Sl = S2 i f f C ~ choice(S1, l e t rec (p , ca l l (p))) =

choice(S2, l e t rec (p , ca l l (p)))

(3) For every model N of CN there exists a model M of AN, such there

is a par t ia l homomorphism from N to M.

(4) For every model M of AN there exists a model N of CN such that

there is a par t ia l homomorphism from N to M.

(5) The type AN has an i n i t i a l model I A the res t r i c t i on IA } STA of

which (to the constructor functions of statements) is isomorphic to the

res t r i c t i on liST A j of the i n i t i a l model of CN.

Example: Let us consider the term $1 :

le t rec(p, choice(nop, ca l l (p)))

the term $2:

l e t rec (p ,ca l l (p))

and the term S3:

le t rec(p, nop).

Then we have

C

C

C

C

C

C

loops(St) = undefined,

loops(S2) = undefined,

loops(S3) : f f ,

elem(Sl,e,x) = (x ~ e v a l (e)) ,

elem(S2,e,x) = undefined,

elem(S3,e,x) : (x ~ eva l (e)) ,

B m bloops(bn(S1)) = undefined,

B ~ bloops(bn(S2)) = undefined,

B ~bloops(bn(S2)) = f f ,

B ~belem(bn(Sl),e,x) = undefined,

B ~ belem(bn(S2),e,x) = undefined,

B ~belem(bn(S3),e,x) = (x ~ eva l (e)) ,

174

A F aloops(an(Sl)) : f f ,

A F aloops(an(S2)) = undefined,

A ~ aloops(an(S3)) = f f ,

A ~ elem(SZ,e,x) = (x ~ eva l (e)) ,

A ~ elem(S2,e,x) : undefined,

A ~ elem(S3,e,x) = (x ~ eval(e))

According to th is we have :

- SI, S2 and S3 are not v i s i b l y equivalent in

- Sl and S2 are v i s i b l y equivalent in B ,

- SI and S3 are v i s i b l y equivalent in A .

C ,

end of example

According to the axioms of BN we have fo r a l l nondeterminist ic statements

suppose that B and C have the same pr im i t i ve models)

loops(S) C = bloops(bn(S)) B ,

loops(S) C : f f ~ elem(S,e,x) = belem(bn(S),e,c)

loops(S) C = undefined ~ belem(S,e,x) = undefined

S (we

In pa r t i cu la r wie have

belem(bn(S),e,x) elem(S,x,x)

where " : " denotes Manna's " i s less def ined"-par t ia l order (c f . /Manna 74/).

The reachably terminal models A and B of AN and BN resp. are incomparable.

The type LN , however, does not have i n i t i a l nor weakly terminal models (c f . F ig .2) :

Prop: (i) The type LN is not weakly s u f f i c i e n t l y complete

(2) The type LN does not have any weakly terminal model nor any i n i t i a l

model

(3) For every model N of CN as well as of BN and AN there is a model

M of LN which is isomorphic to A

175

For studying the relations between the models of LN we introduce the

implementation ordering ~I (cf. /Broy, Gnatz, Wirsing 78/):

L1 ~I L2 ~def

for all Ista Is, e xp e, dom x :

L2 ~ lloops(Is) = f f - LI F lloops(Is) = f f
LI F le lem(Is ,e ,x)=t t ~ L2 ~ lelem(Is,e,x) = f f

Then there does not ex is t unique minimum for ~ I in LN. But every c_i-minimal model

L is a possible deterministic mathematical semantics for LN, i .e .

L F (le lem(S,e ,x) = t t ^ x • y) ~ (l loop(S) = f f ^ le lem(S,e ,y) • t t)

Furthermore the weakly terminal model C of CN is optimal in the following

sense: C is the weakest model of LN which is El-greater than all minimal models

of LN; or equivalently C is the weakest model of LN which is ~I - greater than

all ~i-minimal models of LN (cf. figure 2).

/:
/

/
/

/
/

®
- / /

:, / 1

©

@,,,@

, \
\ \,

\ \

\

\

: \ \ \ \
\

Figure 2: The implementation ordering ~I
A,B,C denote the classes of reachablY terminal models of AN, BN and CN resp.

D denotes classes of extensionally equivalent, deterministic semantic

models of LN.

176

Not.___ee: (1) In a deterministic mathematical semantics L for LN, i .e. in a ~l-mini-
mal model L of type LN , we may introduce a partial function

value : s ta x exp ~ do 9

such that

value(S,e) = x i f f L ~ lelem(In(S), e,x) = t t

(2) The meaning of the nondeterministic language of guarded commands in /Dijkstra

76/, which is very similar to our language, is defined by the predicate trans-

formers of the wp-calculus. I f we define the predicate calculus as primitive

subtype with the sort predicate, the semantic function (cf. also "dynamic logic"

in /Harel, Pratt 78/):

wp : sta x predicate ~ predicate

defines backtrack nondeterminism (as weakly terminal model). An appropriate

definit ion of the wlp-predicate transformers (cf. /Broy et al. 80/), however,

leads to angelic nondeterminism, while the considering wp/wlp together gives

choice nondeterminism.

This remark becomes obvious, i f we define for our language:

wlp(S,R) = ~ x . v dom y : (elem(semi(assign(v,x),S),v,y) = t t ~ R(y))

wp(S,R) = wlp(S,R) ^ ~ x. (loops(semi(assign(v,x), S)) = f f)

where, for s imp l i c i t y , we assume that v is the only ("generalized") program

var iable in the nondeterministic statement S and x E dom .

The axioms of BN and AN immediately give (cf . /Broy et a l . 80/):

BN m wlp(S,R) = wp(S,R) v -~ wp(S,true)

AN ~ wp(S,R) : wlp(S,R) A 7 wlp(S,false)

end of note

We l i ke to consider the minimally defined models of the types AN, BN, and CN resp. ,

i . e . models which are extensional ly equivalent to the reachably terminal models, as

ti#h~ semantic models, whereas the models of LN (especia l ly the determinist ic ones)

which are less than these models in the implementation ordering may be considered as

loose semantic models for these types.

177

5. C gpclUdin~ Remarks

The four d i f ferent types properly re f lec t the four d i f ferent notions of non-

determinism:

Backtrack nondeterminism assumes the computation of the "whole set of possible

values". I f there is a poss ib i l i ty of nontermination then this nontermination must

happen. Thus backtrack nondeterminism is nothing but an impl ic i t notation for

programs working with sets. The choice is made a f te r the computation of the set

between the possible semantic values.

Choice nondetez~nism represents a part icular abstraction of a couple of deci-

sions del iberately l e f t open to the executing instance. Thus i t corresponds to

choices during the course of execution between alternative statements (i .e . the

executing instance has the option of choice which statement to execute).

Unbounded nondeterminism corresponds to a "prophetic" choice during evaluation,

avoiding nonterminating branches. Obviously we cannot give an operational semantics

such that al l possible values can be results, but nonterminating branches are ex-

cluded. This is reflected by the fact that unbounded nondeterminism is not con-

tinuous in the Egli-Milner ordering (cf. /Apt, Plotkin 81/). Nevertheless we may

give approximations for operational semantics, i .e . models of type LN which are

weaker than the part ial i n i t i a l model of AN.

Loose nondeterminism represents a convienient notation for treating a couple of

possible semantic models in one specif ication. Thus i t corresponds to choices

before the execution of the program (or more understandable to choices of par t i -

cular implementations, i .e . between semantic models , of a language). This com-

prises the choice of part icular scheduling strategies in a compiler or operating

system.

All four notions of nondeterminism have thei r jus t i f i ca t ion in d i f ferent areas of

applications. Angelic nondeterminism is the notion used in automata theory. Backtrack

nondeterminism can be used as a convenient notation for certain search problems (cf.

/Floyd 67/). Choice nondeterminism serves as a formal basis for modelling concurrent

processes (cf. /Broy 80/). Furthermore i t can be used as a design tool for repre-

senting "program famil ies", for expressing "delayed design decisions" (cf. /Bauer,

W~ssner 81/) or for exp l i c i t formulation of backtrack algorithms (cf. /Broy, Wirsing

8Oc/).

Of course, there are s t i l l other notions of nondeterminism. I f we want to accept

only specif ic objects (or situations) as possible results of computations ~his

leads to a mixture of choice and backtrack nondeterminism assuming backtracking

only in the specif ic situations ("exceptions").

178

References

/Apt, Plotkin 81/
K.R. Apt, G.D. Plotkin: A Cook's Tour of Countable Nondeterminism. Submitted for
publication

/Bauer, W~ssner 81/
F.L. Bauer, H. W~ssner: Algorithmische Sprache und Programmentwicklung. Berlin-Heidel.
berg-New York: Springer 1981, to appear

/Broy 80/
M. Broy: Transformational Semantics for Concurrent Programs. IPL 11:2, October 1980,
87-91

/Broy, Gnatz, Wirsing 78/
M. Broy, R. Gnatz, M. Wirsing: Semantics of Nondeterministic and Noncontinuous Con-
structs. In: F.L, Bauer, M. Broy (eds.): Program Construction, Marktoberdorf 78.
LNCS 69

/Broy, Wirsing 80a/
M. Broy, M. Wirsing: Programming Languages as Abstract Data Types. In: M. Dauchet
(ed.): L i l le Colloque 80

/Broy, Wirsing 8Oh/
M. Broy, M. Wirsing: Ini t ia l Versus Terminal Algebra Semantics for Partially
Defined Abstract Types. Techn. Universit~t MUnchen, Insti tut fur Informatik, TUM-
I 8018, Dezember 1980

/Broy, Wirsing 80c/
M. Broy, M. Wirsing: From Enumeration to Backtracking. IPL 1__00:4, July 1980, 193-197

/Broy et al. 80/
M. Broy, H. Partsch, P. Pepper, M. Wirsing: Semantic Relations in Programming
Languages, IFIP Congress 80

/Dijkstra 76/
E.W. Dijkstra: A Discipline of Programming. Prentice Hall, Englewood Cliffs 1976

/Floyd 67/
R.M. Floyd: Nondeterministic Algorithms. J. ACM 14, 1967, 636-644

/Gr~tzer 68/
G. Gr~tzer: Universal Algebra. Princeton: Van Nostrand 1968

/Harel, Pratt 78/
D. Harel, V.R. Pratt: Nondeterminism in Logics of Programs, Proc. 5th ACM Symp. on
Principles of Programming Languages. Jan. 1978, 203-213

/Hennessy, Plotkin 80/
M.C.B. Hennessy, G.D. Plotkin: A Term Model of CCS. In: P. Dembinski(ed.): MFCS 80.
LNCS 88, 262-274

/Kennaway, Hoare 80/
J.R.K. Kennaway, C.A.R. Hoare: A Theory of Nondeterminism. In: J. de Bakker, J.v.d.
Leuwen (eds.): ICALP 80, LNCS 86

/Manna 74/
Z. Manna: Mathematical Theory of Computation. New York: McGraw Hill 1974

179

/McCarthy 63/
J. McCarthy: A Basis for a Theory of Computation. In: B. Bradfort, D. Hirschberg
(eds.): Computer Programming and Formal Systems. Amsterdam: North-Holland 1963,
33-70

/Milner 77/
R, Milner: Fully Abstract Models of Typed ~-calculi. TCS 4, 1977, 1-22

/Nivat 80/
M. Nivat: Nondeterministic Programs: An Algebraic Overview. Invited paper, IFIP Con-
gress 80

/Park 80/
D. Park: On the Semantics of Fair Parallelism. In: D. Bj~rner (ed.): Abstract Soft-
ware Specification. LNCS 86, 504-526

/Wirsing, Broy 80/
M. Wirsing, M. Broy: Abstract Data Types as Lattices of Finitely Generated Models.
In: P. Dembinski (ed.): MFCS 80. LNCS 88

