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Abstract 

Different semantic models for a nondeterministic programming language are defined, 

analysed, and compared in the formal framework of algebraic specifications of pro- 

gramming languages by abstract types. Four abstract types are given representing 

choice (%rratic") nondeterminism~ backtrack {"d~monic'~ nondeterminism~ unbounded 

("angelic") nondeterminism and loose nondeterminism. The classes of algebras of 

these types represent classes of semantic models. A comparison of these classes of 

semantic models shows the connections and differences between the four different 

concepts of nondeterminism as fbund in programming languages. 

1. Introduction 

The concepts of nondeterminism and nondeterminacy have found their way into pro- 

gramming languages only during the middle of the last decade, although McCarthy in 

his pioneering paper /McCarthy 63/ already introduced an "ambiguity operator" and 

Floyd in /Floyd 67/ suggested nondeterministic programs for the implicit formulation 

of backtrack programs. 

Recently the growing interest in rigorous methods for formal specification and pro- 

gram development and numerous attempts to define a formal semantics for concurrent 

programming languages has led to intensive investigations in the theory and formal 

foundations of nondeterminism. However, a careful study of the different approaches 

indicates, that not only the formal description methods are different, but there are 

actually different concepts described, although the differences are often rather 
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sophisticated but nevertheless of great importance. Strictly speaking essentially 

("extensionally") different semantic models can be given for nondeterministic pro- 

gramming languages reflecting the different concepts of nondeterminism. 

Recent studies have shown, that algebraic methods allow the specification of pro- 

gramming languages by abstract (data) types in a short, flexible way (cf./Broy, 

Wirsing 80a/). There the context free syntax corresponds to the signature (the term- 

algebra represents the set of syntactically correct programs), the context conditions 

(sometimes called "static semantics") are expressed by particular definedness predi- 

cates (restricting the term algebra), and the semantics is specified by a number of 

(conditional) equations. Then each model of that type can be considered as a parti- 

cular semantic model of the programming language. Due to the termination problem of 

partial recursive functions such an algebraic specification generally includes se- 

mantic models where optimal or even maximal fixed points are associated with recur- 

sive definitions. The minimality property of least fixed points, however, can be con- 

veniently expressed by weakly terminal models, the existence of which is guaranteed 

under certain (syntactic) conditions (cf. /Broy, Wirsing 8Oh/). 

The class of extensionally equivalent models of the type containing the weakly 

terminal models comprises all possible semantic models which specify the semantics 

of least fixed points (syntactic, operational, algorithmic and mathematical models). 

In particular the ini t ia l  model of the type lies in this class which forms a complete 

lattice of models (in the usual sense, cf. /Wirsing, Broy 80/). 

In this formal framework i t  is also possible to discuss the semantic models of non- 

deterministic (applicative or procedural) programming languages. The various con- 

cepts of nondeterminism such as backtrack nondeterminism versus choice nondeter- 

minism (cf. /Broy et al. 80/, /Kennaway, Hoare 80/) as well as loose versus tight 

nondeterminism (cf. /Park 80/) may be discussed conveniently in the algebraic 

approach by the particular classes of models of a nondeterministic programming 

language characterized by the resp. semantic equations. 

We show that backtrack nondeterminism, unbounded nondeterminism and choice non- 

determinism admit terminal semantics. The weakly terminal models of backtrack 

nondeterminism as well as of unbounded nondeterminism are properly weaker than those 

of choice nondeterminism. In the Cpartial) i n i t i a l  semantics of both forms of non- 

determinism nondeterministic statements differ only in their evaluation, while the 

induced equalities between them are the same. 
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Loose nondeterminism does not allow terminal or i n i t i a l  semantics, but only minimal 

models which correspond to al l  possible deterministic and nondeterministic least 

fixed point semantics which implement nondeterministic statements. The weakly termi- 

nal model of backtrack nondeterminism is one of these minimal models. By introducing 

an "implementation" relation E l  we can structurize these minimal models in such a 

way that the ~ I - minimal models are exactly the deterministic least fixed point 

implementations. The weakly terminal models of choice nondeterminism are optimal in 

the following sense: They are the weakest models which are ~ I - greater than al l  

I - minimal models. 

F ina l l y  we show that the so-called Egl i -Mi lner  Ordering is a consequence of the 

speci f icat ion using weak homomorphisms and thus is "natural" in the weakly terminal 

models. 

In fact, the goal of this case study is twofold: First ,  we want to demonstrate how 

algebraic methods can be used as a powerful, f lexible tool for the formulation and 

analysis of semantic specifications. Second, we give an attempt to c lar i fy ,  unify, 

and compare several notions of nondeterminism with rather sophisticated differences 

as found in the l i terature. 

We demonstrate our approach by means of abstract data types specifying the sort 

sta of nondeterministic statements. The types define procedural programming langua- 

ges very similar to Dijkstra's language of guarded commands. We investigate several 

closely related versions: 

- a type AN the weakly terminal model of which corresponds to unbounded ("angelic") 

nondeterminism (this type resembles to the wlp-calculus definit ion of Dijkstra). 

- a type BN the weakly terminal model of which corresponds to backtrack ("demonic") 

nondeterminism (this type resembles to the wp-calculus definit ion of Dijkstra), 

- a type CN the weakly terminal model of which corresponds to choice ('~rratic") 

nondeterminism. Every model of CN implements a model of BN in a "natural" way~) 

- a type LN corresponding to loose nondeterminism. For this type there does not 

exist a weakly terminal model. However al l  models of AN, BN as well as al l  

models of CN are models of LN, too. Each minimal model of LN represents the 

mathematical semantics of a particular (possibly deterministic) programming 

language. 

*)This type resembles to the wp/wlp-calculus definit ion of Dijkstra, 
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2. Basic Def in i t ions 

Before we define one type we b r i e f l y  give the most important def in i t ions  ( fo r  a 

complete de f in i t i on  see /Broy, Wirsing 80a/). We consider hierarchical  abstract 

types with primitive subtypes and finitely generated partial heterogeneous 

E-algebras as models; i .e .  part ia l  heterogeneous E-algebras without proper sub- 

algebras. Between two E-algebras A und B a family m of total  mappings is 

cal led (par t ia l )  Z -homomorphism (c f . /Gr~tzer  68/) ,  i f  for  a l l  operations f 

~( fA(x l  . . . . .  Xn)) = { undefinedfB(~(Xz) . . . . .  ~(Xn)) i f  otherwisefA(xl . . . .  'Xn) is defined 

and i f  

fA(x I . . . . .  Xn) defined ~ fB(~(Xl) . . . . .  ~(Xn) ) defined 

A model I of T is cal led i n i t i a l  , i f  for  a l l  models A of T there 

exists a unique homomorphism ~ : I ~A .  An i n i t i a l  model I is minimally defined, 

i .e .  every term t which is undefined in some model of T is undefined in I ,  too. 

The propert ies of homomorphisms for  total  algebras are generalized by the fol lowing 

notion (cf.  /Broy, Wirsing 8Oh/). 

A family ~ of par t ia l  mappings is cal led weak Z -homomorphism, i f  for  al l  

operations f 
i fB(~(Xl) . . . . .  ~(Xn) ) i f  fB(~(x I) . . . .  ~(Xn)) is defined 

~( fA(x l  . . . . .  Xn)) = undefined otherwise 

I f  such a weak Z-homomorphism exists,  then B is cal led weaker than A . A 

mapping which is both a par t ia l  Z-homomorphism and a weak z-homomorphism is cal led 

a strong Z-homomorphism, 

In order to describe observable equivalence we need a notion of termina l i ty  for  

par t ia l  algebras. Let I be an i n i t i a l  model of T and consider the class 

W =def {AI there exists a s t r o ~  z-homomorphism ~ : I ~ A}. Then a model Z 

of T is said to be weakly terminal i f  Z is strongly terminal in W, i .e .  

for  a l l  A E W there exists a strong Z-homomorphism m : A ~ Z . The weakly 

terminal models as well as al l  elements of W are minimally defined. 

Let us f i x  a single model P' of the pr imi t ive subtype P of T and consider 

only the models of T which are extensions of P'. Then every two models A and 

B for  which a stron~ ~-homomorphism ~ : A ~ B or ~ : B ~ A exists are 

extensionally equivalent, i .e .  for  every function f with range in P and every 
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nonprimit ive term t we have f (  . . . .  t . . . .  )A = f (  . . . .  t . . . .  )B. In pa r t i cu la r ,  

W forms a class of extensional ly  equivalent models. Every Z-homomorphism 

between two extens ional ly  equivalent models is a strong z-homomorphism. I f  C is 

a class of extensional ly  equivalent models then a strongly i n i t i a l  ( terminal)  

model A E C is called (C-)extensionally in i t ia l  (terminal). For example, the 

in i t ia l  models of T are W-extensionally in i t ia l  and the weakly terminal models 

are W-extensionally terminal (cf. figure I). 

The extensional equivalence leads to another de f i n i t i on  of te rmina l i t y .  A model 

R of T is  cal led reachable , i f  fo r  a l l  models A of  T there ex is ts  an 

extensional ly  equivalent model B of T such that  there is a weak z-homomor- 

phism ~ : B ~ R . Every reachable model is minimally def ined, T is reaoh~ly 

terminal i f  i t  is st rongly terminal in the class of a l l  reachable models. 

I f  an i n i t i a l  model ex is ts ,  then every reachably terminal model is weakly terminal 

( but in general not vice versa ). 

A model A of a h ierarchical  abstract type is cal led f u l l y  abstract. (c f .  /Mi lner  

77/) i f  for  every pai r  of terms t l ,  t2 of nonprimit ive sort  t l  A = t2 A i f f  fo r  

every pr im i t i ve  context K[x] :  K [ t l ]  A = K[t2] ; a pr imi t ive context K[x] fo r  terms 

of sort  s is a term K[x] wi th the only free var iable x such that for  every term 

t of sort  s , K[ t ]  is a term of p r im i t i ve  sort .  

Obviously (c f .  /Broy, Wirsing 80b/) a f u l l y  abstract model is minimal wi th respect 

to strong homomorphisms. Furthermore, i f  there ex is ts  a f u l l y  abstract ,  minimally 

defined model of  a type and a weakly terminal model, then both are isomorphic. Both 

notions of minimal f u l l  abstractness and weak te rm ina l i t y  therefore capture the 

notion of observable equal i ty  or funct ional  equivalence. This means that in a f u l l y  

abstract model two terms are considered to be equal, i f f  a l l  observable resul ts  of 

appl icat ions of th is  term (the resu l t  of th is  term in a l l  p r im i t i ve  contexts) are 

equal. Then the two terms are cal led v is ib l y  equivalent, 

3. The Abstract Type o f  Choice Non determinism 

We define an abstract type comprising the fo l lowing pr imi t i ve  sorts: 

dora , 

yaP , 

pros,, 

exp , 

the sort  of a semantic objects ( inc lud ing the t ru th  values t t  and f f  and 

the i r  charac ter is t i c  operations) with an equal i ty  operation ~ , 

the sort  of i den t i f i e r s  fo r  programming var iables,  

the sor t  of i d e n t i f i e r s  for  procedures, 

the sort  of ar i thmet ic  expressions over var together with a to ta l  evalua - 

t ion  funct ion eval : exp ~ d om ' , which y ie lds error for  free i den t i f i e r s  

(where error is  a defined constant of dom). We denote by e l [e2 /v ]  the 
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subst i tut ion of v in el  by e2. 

bexp, the set of boolean expressions (also with evaluation function eval) .  

For s imp l i c i t y  we may assume that these sorts are given by abstract types, which are 

monomo~hic, i . e ,  for  which up to isomorphic only one model ex is ts .  Equivalently 

we might assume to take always i n i t i a l  (or terminal) models of the pr imi t ive  sub- 

type (cf .  /Broy, Wirsing 80b/). 

As the only nonprimit ive sort  we specify the sort  

statements with the eon~tructorfunctions: 

nop. abort : ~ sta, 

assign : var x exp ~ sta,  

i f  : bexp x st__aa x sta 

semi, choice : sta x sta ~ s ta ,  

le t rec  : proc x s t a  ~ sta, 

ca l l  : proc ~ st a, 

s ta ,  

sta of nondeterministic 

As semantic functions we use 

with the meaning 

F i rs t  we specify 

loops : sta ~ { t t , f f }  

elem : sta x exp × dom ~ { t t , f f }  

loops(S) = f f  i f f  the execution of S cannot lead to a non- 

terminating computation 

elem(S,e,x) = t t  i f f  a f te r  the execution of 

may be evaluated to x . 

a number of semantic equal i t ies for  statements: 

S the expression e 

(STA) 

semi(abort,S) = abort = semi(S,abort), 

semi(nop,S) = S = semi(S,nop), 

semi(semi(S1,S2),S3) = semi(Sl, semi(S2,S3)), 

choice(Sl,choice(S2,S3)) = choice(choice(Sl,S2),S3), 

letrec(p,S) = S [ l e t rec (p ,S ) / ca l l ( p ) ] ,  

semi(if(b,S1,S2),S3) = if(b,semi(S1,S3), semi(S2,S3)), 

semi(assign(v,e), i f (b,S1,S2)) = i f (bEe/v ] ,  semi(assign(v,e),Sl) ,  

semi(assign(v,e),S2)), 
semi(choice(Si,S2),S3) = choice(semi(Sl,S3), semi(S2,S3)), 

semi(Sl,choice(S2,S3)) = choice(semi(Sl,S2), semi(Sl,S3)), 

if(b,choice(S1,S2),S3) = choice( i f (b ,Sl ,S3) ,  i f (b,S2,S3)) ,  

if(b,S1,choice(S2,S3)) = choice(i f(b,S1,S2), i f ( b ,S l ,S3 ) ) ,  
choice(Sl,S2) = choice(S2,Sl), 
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We consider the fo l lowing semantic equations invo lv ing  the evaluat ion-operat ions 

eval ,  loops and elem ( fo l lowing /Broy, Wirsing 80b/ to specify the definedness 
of a term t by DEFINED(t)): 

loops(nop) = f f ,  elem(nop,e,x) = (x ~ eva l (e ) ) ,  

DEFINED(abort), DEFINED(Ietrec(p,S)), DEFINED(if(B,SI,S2)), 

eval(b) = t t  ~ i f (b,S1,S2) : SI, 

eval(b) : f f  ~ i f (b ,S l ,S2)  = $2, 

eval(b) : error  ~ i f (b,S1,S2) = abor t ,  

loops(semi(S,ass ign(v,e l ) ) )  = loops(S), 

e lem(semi(S,ass ign(v ,e l ) ) ,e2,x)  = e lem(S,e2 [e l / v ] , x ) ,  
loops(semi(S,ca l l (p) ) )  = f f ,  e lem(semi(S,ca l l (p) ) ,e ,x)  = (x ~ e r ro r ) ,  

DEFINED(semi(SI,S2)), DEFINED(choice(Sl,S2)), 

For our choice operation we require 

( loops(Sl)  : f f  ^ loops(S2) = f f )  ~ loops(choice(Sl,S2)) = f f  

elem(Sl,e,x) : t t  ~ elem(choice(S1,S2),e,x) = t t  

Let us ca l l  th is  type CN. Every statement is  defined in every model of CN whereas 

loops and elem may be par t ia l  funct ions.  We ind icate the undefinedness of the 

expression loops(S) by loops(S) = undefined (analogously fo r  e lem(S,e,x)) .  

The theorems in /Broy, Wirsing 80a,b/ immediately give the fo l low ing  proposi t ion.  

Prop: 
(1) The type CN is weakly s u f f i c i e n t l y  complete and every statement is 

defined 
(2) The type CN has a reachably terminal model C wi th  the fo l low ing  

propert ies:  
(a) C ~ Ioops(S) E { f f , unde f i ned }  

(b) C is a minimal ly defined model: 

3 model M : M ~ loops(S) = undefined ~ C ~ loops(S) = undefined 

3 model M : M ~ elem(S,e,x) = undefined ~ C~ elem(S,e,x)=undefined 

(c) C is a f u l l y  abstract  model i . e .  

C ~ SI = $2 

(3) 

i f f  

and 

~- elem(semi(S,S1),e,x) : b 

The type CN has an i n i t i a l  model 

equa l i t y  in I C is determined by the equations 

I C~ $I = $2 i f f  STA F- $1 : $2 

fo r  a l l  b E { t t , f f , u n d e f i n e d } ,  s t a  S, exp e, dom x: 

loops(semi(S,Sl)) : b ~ ~loops(semi(S,S2)) = b 

Felem(semi(S,S2),e,x) = b 

I C which is minimal ly defined. The 

STA: 
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Therefore two statements are identical in the weakly terminal model C i f  they are 

v is ib ly  equivalent. From the "minimal definedness"-property we see that the weakly 

terminal models are equivalent to least fixed point semantics. The weak homomorphisms 

induce exactly the Egli-Milner-ordering (cf. e.g. /Nivat 80/)between semantic models: 

P E°P" 

Let A, B be models of CN. I f  there exists a weak homomorphism from A to B 

then for every statement S 

S B ~ S A 
Eg l i -Mi lner  

i . e .  for  a l l  i d e n t i f i e r s  y and dom x : 

and 

B~ elem(S,y,x) = t t  

B~ loops(S) = f f  : 

(A~ loops(S)=ff  ^ 

A ~ elem(S,y,x) = t t  

(B~ elem(S,y,x) = t t  ~ A~elem(S,y,x) = t t ) )  

The i n i t i a l  model I c is  minimally defined and I c and C 

equivalent , i . e .  fo r  a l l  b E { t t , f f ,  undefined} 
are extensional ly  

and 

C F loops(S) : b i f f  I C F loops(S) = b 

C F elem(S,e,x) = b i f f  I c F  elem(S,e,x) = b 

The equa l i t y  between two statements in I C is the strong equal i ty :  Two statements 

are ident ica l  in I C i f  t he i r  equa l i ty  is provable from the axioms STA . 

The class of minimal ly defined models of CN coincides with the class of reachable 

models and forms a complete l a t t i c e  w . r . t ,  to the usual homomorphisms as ordering 

re la t ion  (c f .  /Wirsing, Broy 80/) .  The i n i t i a l  model I C is i n i t i a i  in th is  class 

whereas the weakly terminal model is terminal.  As in /Broy, Wirsing 80b/ one can 

define a par t ia l  order on the classes of extens ional ly  equivalent models by 

C1 < C2 i f f  there ex is t  models MI E Cl and M2 E C2 

such that  

loops MI and elem MI are "less defined" 

than loops M2 and elem M2 

where " less defined" re f lec ts  the usual ordering on f l a t  domains (cf .  e.g./Manna 74/).  

Then the minimal ly defined models are a minimum in th is  ordering. There does not 

ex is t  a maximum, but every maximal class corresponds to maximal f ixed point  semantics 

(c f .  f igure  1). 
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Figure I :  The structure of CN 

In particular, for every minimally defined model M we have 

M F loops(S) ¢ t t ,  

M ~ loops(S) = f f  ~ elem(S,e,x) E { t t , f f }  , 

and 
M ~ loops(S) : undefined ~ elem(S,e,x) E { t t ,  undefined}. 

According to the def in i t ion of the Egli-Milner ordering as defined for models we 

define for nondeterministic statements $1, $2: 
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$1 ~ Egl i -Mi lner  S2 i f f  

v s ta  S:( loops(semi(S,Sl ) )  : f f  ^vee~1~e, dom x :elem(semi(S,Sl),e,x) : elem(semi(S,S2,e,x)) 

v ( loops(semi(S,Sl)) ¢ f f  AV ex._pe, domx :elem(semi(S,Sl),e,x) : t t  

elem(semi(S,S2),e,x) = t t )  

This ordering is used to define a fixed point theory for nondeterministic programs. 

In minimally defined models of CN the (functionals associated with) recursive 

procedures are continuous wrt. to the Egli-Milner ordering (cf. /Nivat 80/). In 

part icular  this means that i f  elem(S,e,x) is t t  for  i n f i n i t e l y  many x then 

loops(S) ~ f f .  

4. Backtrack Nondeterminism, Unbounded Nondeterminism and Loose Nondeterminism 

Now we specify the further types AN, BN and LN based on the type CN. 

type BN =- sort bsta , 

bn : sta ~ bsta , 

belem : bsta × ex.p × .d.°m ~ { t t , f f }  , 

bloops: bsta ~ { t t , f f } ,  

bloops(bn(S)) = loops(S), 

belem(bn(S),e,x) = (not(loops(S)) and 

DEFINED(bn(S)) 

elem(S,e,x)), 

endoftype 

type AN sort asta , 

an : s ta ~ a.sta, 

aelem : asta × e_~ x do___mm ~ { t t , f f } ,  

aloops : asta ~ { t t , f f } ,  

loops(S) = f f  ~ aloops(an(S)) = f f ,  

aelem(an(S),e,x) : elem(S,e,x), 

loops ($I) = f f  ~ aloops(an(choice(SI,S2))) = f f ,  

DEFINED(an(S)) en.d ' of type. 

Following /Broy, Wirsing 80b/ we use a definedness predicate "DEFINED" to specify 

the definedness Qf a l l  nQndeterministic statements in the types AN, BN, and LN, 
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type LN ~ sort Ista , 

In : sta ~ Is ta , 

lelem : Is ta × exp × dom ~ { t t , f f }  , 

l loops: Ista ~ { t t , f f } ,  

loops(S) = f f  ~ l loops( In(S))  = f f ,  

le lem(In(S) ,e,x)  = t t  ~ elem(S,e,x) = t t  , 

(~) l loops( Is )  = f f  ~ 3 exp e, dom x : le lem( Is ,e ,x )  = t t ,  
DEFINED(In(S)) 

endoftype 

Note, that  we do not consider the type CN to be part of  the types AN, BN and LN 

but as hidden. The same technique is applied e.g. in /Hennessy, Plotk in 80/. The 

axiom (m) must be required fo r  LN but i t  holds in minimally defined models of AN, 

BN and CN. 

The fo l lowing proposit ions give some information about the types BN, AN and 

and the i r  re la t ionsh ip  to CN : 

LN 

Prop: (1) The type BN is weakly s u f f i c i e n t l y  complete and every statement is 

defined. 

(2) The type BN has a reachably terminal model B with the fo l lowing proper- 

t ies  

(a) B is a minimally defined, f u l l y  abstract model, 
(b) for  every two closed statements ( i . e .  statements wi thout non- 

i n i t i a l i z e d  var iables) Sl,  $2: B~  Sl = S2 i f f  

C # loops(Sl) = loops(S2) = undefined or C # Sl = $2 

(3) For every model N of CN there ex is ts  a model M of BN which is 

weaker than N . 

(4) For every model M of BN there ex is ts  a model N of CN such that  

M is weaker than N. 

(5) The type BN has an i n i t i a l  model I B the r e s t r i c t i o n  IBISTA of 

which (to the constructor funct ions of statements) is isomorphic to 

the r es t r i c t i on  IISTA of the i n i t i a l  model of CN 

Therefore the equal i ty  between statements is the same in the i n i t i a l  models of BN 

and CN, whereas according to (2) the weakly terminal model B of BN is properly 

weaker than the weakly terminal model C of CN. The "natura l "  weak homomorphism 

: N ~ M ( fo r  models N of CN and M of BN) which is defined by 

m(sN)=def bn(S)M' ~(l°°psN) =def bl°°psM and ~(elem N) = def belemM 
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is a sur ject ive functor from CN onto BN. 

Prop. : (I) 

(2) 

The type 

is  defined. 

The type AN has a reachably terminal model A 

properties 

(a) 
(b) 

AN is weakly s u f f i c i e n t l y  complete and every statement 

with the fol lowing 

A is minimally defined and f u l l y  abstract; 

for  every two closed statements ( i . e .  statements without non in i t ia -  

l ized variables) $ I ,  $2 : 

A ~ Sl = S2 i f f  C ~ choice(S1, l e t rec (p , ca l l ( p ) ) )  = 

choice(S2, l e t rec (p , ca l l ( p ) ) )  

(3) For every model N of CN there exists a model M of AN, such there 

is a par t ia l  homomorphism from N to M. 

(4) For every model M of AN there exists a model N of CN such that 

there is a par t ia l  homomorphism from N to M. 

(5) The type AN has an i n i t i a l  model I A the res t r i c t i on  IA } STA of 

which (to the constructor functions of statements) is isomorphic to the 

res t r i c t i on  liST A j  of the i n i t i a l  model of CN. 

Example: Let us consider the term $1 : 

le t rec(p,  choice(nop, ca l l ( p ) ) )  

the term $2: 

l e t rec (p ,ca l l (p ) )  

and the term S3: 

le t rec(p,  nop). 

Then we have 

C 

C 

C 

C 

C 

C 

loops(St) = undefined, 

loops(S2) = undefined, 

loops(S3) : f f ,  

elem(Sl,e,x) = (x ~ e v a l ( e ) ) ,  

elem(S2,e,x) = undefined, 

elem(S3,e,x) : (x ~ eva l (e) ) ,  

B m bloops(bn(S1)) = undefined, 

B ~ bloops(bn(S2)) = undefined, 

B ~bloops(bn(S2)) = f f ,  

B ~belem(bn(Sl),e,x) = undefined, 

B ~ belem(bn(S2),e,x) = undefined, 

B ~belem(bn(S3),e,x) = (x ~ eva l (e) ) ,  
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A F aloops(an(Sl)) : f f ,  

A F aloops(an(S2)) = undefined, 

A ~ aloops(an(S3)) = f f ,  

A ~ elem(SZ,e,x) = (x ~ eva l (e ) ) ,  

A ~ elem(S2,e,x) : undefined, 

A ~ elem(S3,e,x) = (x ~ eval(e))  

According to th is  we have : 

- SI, S2 and S3 are not v i s i b l y  equivalent in 

- Sl and S2 are v i s i b l y  equivalent in B , 

- SI and S3 are v i s i b l y  equivalent in A . 

C , 

end of example 

According to the axioms of  BN we have fo r  a l l  nondeterminist ic statements 

suppose that  B and C have the same pr im i t i ve  models) 

loops(S) C = bloops(bn(S)) B , 

loops(S) C : f f  ~ elem(S,e,x) = belem(bn(S),e,c) 

loops(S) C = undefined ~ belem(S,e,x) = undefined 

S (we 

In pa r t i cu la r  wie have 

belem(bn(S),e,x) elem(S,x,x) 

where " : "  denotes Manna's " i s  less def ined"-par t ia l  order (c f .  /Manna 74/).  

The reachably terminal models A and B of  AN and BN resp. are incomparable. 

The type LN , however, does not have i n i t i a l  nor weakly terminal models (c f .  F ig .2) :  

Prop: ( i )  The type LN is not weakly s u f f i c i e n t l y  complete 

(2) The type LN does not have any weakly terminal model nor any i n i t i a l  

model 

(3) For every model N of CN as well  as of  BN and AN there is a model 

M of LN which is isomorphic to A 
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For studying the relations between the models of LN we introduce the 

implementation ordering ~I (cf. /Broy, Gnatz, Wirsing 78/): 

L1 ~I L2 ~def 

for all Ista Is, e xp e, dom x : 

L2 ~ lloops(Is) = f f  - LI F lloops(Is) = f f  
LI F le lem( Is ,e ,x)=t t  ~ L2 ~ lelem(Is,e,x) = f f  

Then there does not ex is t  unique minimum for ~ I  in LN. But every c_i-minimal model 

L is a possible deterministic mathematical semantics for LN, i .e .  

L F ( le lem(S,e ,x )  = t t  ^ x • y) ~ ( l loop(S)  = f f  ^ le lem(S,e ,y)  • t t )  

Furthermore the weakly terminal model C of CN is optimal in the following 

sense: C is the weakest model of LN which is El-greater than all minimal models 

of LN; or equivalently C is the weakest model of LN which is ~I - greater than 

all ~i-minimal models of LN (cf. figure 2).  
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Figure 2: The implementation ordering ~I 
A,B,C denote the classes of reachablY terminal models of AN, BN and CN resp. 

D denotes classes of extensionally equivalent, deterministic semantic 

models of LN. 
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Not.___ee: (1) In a deterministic mathematical semantics L for LN, i .e.  in a ~l-mini- 
mal model L of type LN , we may introduce a partial function 

value : s ta x exp ~ do 9 

such that 

value(S,e) = x i f f  L ~ lelem(In(S), e,x) = t t  

(2) The meaning of the nondeterministic language of guarded commands in /Dijkstra 

76/, which is very similar to our language, is defined by the predicate trans- 

formers of the wp-calculus. I f  we define the predicate calculus as primitive 

subtype with the sort predicate, the semantic function (cf. also "dynamic logic" 

in /Harel, Pratt 78/): 

wp : sta x predicate ~ predicate 

defines backtrack nondeterminism (as weakly terminal model). An appropriate 

definit ion of the wlp-predicate transformers (cf. /Broy et al. 80/), however, 

leads to angelic nondeterminism, while the considering wp/wlp together gives 

choice nondeterminism. 

This remark becomes obvious, i f  we define for our language: 

wlp(S,R) = ~ x . v dom y : (elem(semi(assign(v,x),S),v,y) = t t  ~ R(y)) 

wp(S,R) = wlp(S,R) ^ ~ x. (loops(semi(assign(v,x), S)) = f f )  

where, for  s imp l i c i t y ,  we assume that v is the only ("generalized") program 

var iable in the nondeterministic statement S and x E dom . 

The axioms of BN and AN immediately give (cf . /Broy et a l .  80/): 

BN m wlp(S,R) = wp(S,R) v -~ wp(S,true) 

AN ~ wp(S,R) : wlp(S,R) A 7 wlp(S,false) 

end of note 

We l i ke  to consider the minimally defined models of the types AN, BN, and CN resp. , 

i . e .  models which are extensional ly equivalent to the reachably terminal models, as 

ti#h~ semantic models, whereas the models of LN (especia l ly  the determinist ic ones) 

which are less than these models in the implementation ordering may be considered as 

loose semantic models for  these types. 
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5. C gpclUdin~ Remarks 

The four d i f ferent  types properly re f lec t  the four d i f ferent  notions of non- 

determinism: 

Backtrack nondeterminism assumes the computation of the "whole set of possible 

values". I f  there is a poss ib i l i ty  of nontermination then this nontermination must 

happen. Thus backtrack nondeterminism is nothing but an impl ic i t  notation for 

programs working with sets. The choice is made a f te r  the computation of the set 

between the possible semantic values. 

Choice nondetez~nism represents a part icular abstraction of a couple of deci- 

sions del iberately l e f t  open to the executing instance. Thus i t  corresponds to 

choices during the course of execution between alternative statements ( i .e .  the 

executing instance has the option of choice which statement to execute). 

Unbounded nondeterminism corresponds to a "prophetic" choice during evaluation, 

avoiding nonterminating branches. Obviously we cannot give an operational semantics 

such that al l  possible values can be results, but nonterminating branches are ex- 

cluded. This is reflected by the fact that unbounded nondeterminism is not con- 

tinuous in the Egli-Milner ordering (cf. /Apt, Plotkin 81/). Nevertheless we may 

give approximations for operational semantics, i .e .  models of type LN which are 

weaker than the part ial  i n i t i a l  model of AN. 

Loose nondeterminism represents a convienient notation for treating a couple of 

possible semantic models in one specif ication. Thus i t  corresponds to choices 

before the execution of the program (or more understandable to choices of par t i -  

cular implementations, i .e .  between semantic models , of a language). This com- 

prises the choice of part icular scheduling strategies in a compiler or operating 

system. 

All four notions of nondeterminism have thei r  jus t i f i ca t ion  in d i f ferent  areas of 

applications. Angelic nondeterminism is the notion used in automata theory. Backtrack 

nondeterminism can be used as a convenient notation for certain search problems (cf.  

/Floyd 67/). Choice nondeterminism serves as a formal basis for modelling concurrent 

processes (cf. /Broy 80/). Furthermore i t  can be used as a design tool for repre- 

senting "program famil ies",  for expressing "delayed design decisions" (cf.  /Bauer, 

W~ssner 81/) or for exp l i c i t  formulation of backtrack algorithms (cf.  /Broy, Wirsing 

8Oc/). 

Of course, there are s t i l l  other notions of nondeterminism. I f  we want to accept 

only specif ic objects (or situations) as possible results of computations ~his 

leads to a mixture of choice and backtrack nondeterminism assuming backtracking 

only in the specif ic situations ("exceptions"). 
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