
On Synchronous and Asynchronous
Compatibility of Communicating Components

Rolf Hennicker1, Michel Bidoit2, and Thanh-Son Dang1

1 Ludwig-Maximilians-Universität München, Germany
2 LSV, CNRS and ENS de Cachan, France

Abstract. We study interacting components and their compatibility
with respect to synchronous and asynchronous composition. The behav-
ior of components is formalized by I/O-transition systems. Synchronous
composition is based on simultaneous execution of shared output and
input actions of two components while asynchronous composition uses
unbounded FIFO-buffers for message transfer. In both contexts we study
compatibility notions based on the idea that any output issued by one
component should be accepted as an input by the other. We distinguish
between strong and weak versions of compatibility, the latter allowing
the execution of internal actions before a message is accepted. We con-
sider open systems and study conditions under which (strong/weak) syn-
chronous compatibility is sufficient and necessary to get (strong/weak)
asynchronous compatibility. We show that these conditions characterize
half-duplex systems. Then we focus on the verification of weak asyn-
chronous compatibility for possibly non half-duplex systems and provide
a decidable criterion that ensures weak asynchronous compatibility.

1 Introduction

Structuring software systems by interconnected components is a standard tech-
nique in software engineering. In this work we consider active components with
a well defined behavior which work together by message exchange. Each single
component has a life cycle during which it sends and receives messages and it
can also perform internal actions in between. For the correct functioning of the
overall system it is essential that no communication errors occur during compo-
nent interactions. There are different types of communication errors which are
influenced by the communication style and system architecture. In our study we
focus on bidirectional, peer to peer communication and we discuss synchronous
and asynchronous message exchange. The former is based on a rendezvous mech-
anism such that two components must execute shared output and input actions
together. The latter uses unbounded FIFO-buffers which hold the messages sent
by one component and received by the other. In this context two prominent types
of communication errors can be distinguished. The first one concerns situations,
in which an output of one component is not accepted as an input by the other,
the second one occurs if a component waits for an input which is never deliv-
ered. Inspired by the work of de Alfaro and Henzinger [11] on compatibility of



interface automata, we focus on the former kind of communication error which
itself gives rise to several variations.

De Alfaro and Henzinger deal with open systems and synchronous commu-
nication. They consider two interface automata to be compatible if there exists
a “helpful” environment such that the interacting components can never reach
an error state where “one of the automata may produce an output action that
is in the input alphabet of the other automaton, but is not accepted”. We allow
open systems as well but follow the “pessimistic” approach where components
should be compatible in any environment. For the formalization of component
behaviors we use I/O-transition systems (IOTSes) and call two IOTses strongly
synchronously compatible if the compatibility requirement from above holds. In
many practical examples it turns out that before interacting with the sending
component the receiving component should still be able to perform some internal
actions in between. This leads to our notion of weak synchronous compatibility
(which works well with weak bisimulation and refinement [4]).

In this work we study also asynchronous compatibility of components com-
municating via unbounded message queues. Asynchronous compatibility requires
that whenever a message queue is not empty, the receiver component must be
able to take the next element of the queue; a property called specified reception
in [6]. We distinguish again between strong and weak versions of asynchronous
compatibility. In the asynchronous context the weak compatibility notion is par-
ticularly powerful since it allows a component, before it inputs a message waiting
in the queue, still to put itself messages in its output queue (since we consider
such enqueue actions as internal). We have shown in [3] that also weak asyn-
chronous compatibility works well with weak bisimulation and refinement.

An obvious question is to what extent synchronous and asynchronous com-
patibility notions can be related to each other and, if this is not possible, which
proof techniques can be used to verify asynchronous compatibility. We contribute
to this issues with the following results:

1. We establish a relationship between strong/weak synchronous and asyn-
chronous compatibility of two components (Sects. 4.1 and 4.2) and for-
mulate three equivalent (and decidable) conditions such that strong/weak
synchronous compatibility is sufficient, and even necessary, for strong/weak
asynchronous compatibility. One of the three conditions is the half-duplex
property: at any time at most one message queue is not empty; see, e.g., [9,5].

2. In the second part of this work (Sect. 5), we consider general, possibly non
half-duplex systems, and study the verification of weak asynchronous com-
patibility in such cases. Due to the unboundedness of the FIFO-buffers the
problem is not decidable [6]. We investigate, however, decidable and powerful
criteria which allow us to prove weak asynchronous compatibility.

Related work. In our study we focus on asynchronous message exchange via
FIFO-buffers. Of course, other kinds of asynchronous communication using, e.g.,
event pools for modeling the composition of state machines in UML, or commu-
nication channels storing messages as bags are often considered. For instance,

2



in [12], we have studied (modal) asynchronous I/O-transition systems and Petri
nets where communication is realized by unbounded, but unordered, channel
places. We have shown that in this case various compatibility problems are de-
cidable. Systems of finite automata which contain both FIFO-buffers and bag
channels are studied in [10] where topologies are investigated in which the reach-
ability problem is decidable.

Compatibility notions are mostly considered for synchronous systems, since
in this case compatibility checking is easier manageable and even decidable if
the behaviors of local components have finitely many states. Some approaches
use process algebras to study compatibility, like [7] using the π-calculus, others
investigate interface theories with binary compatibility relations preserved by
refinement, see, e.g., [16,14] for modal interfaces, or consider n-ary compatibil-
ity in multi-component systems like, e.g., team automata in [8]. A prominent
example of multi-component systems with asynchronous communication via un-
bounded FIFO-buffers are CFSMs [6], for which many problems, like unspecified
reception, are undecidable. The situation is different, if half-duplex systems of
two CFSMs are considered. Cécé and Finkel have shown in [9] that then the set
of reachable configurations is recognizable and several problems, including un-
specified reception, are decidable. The approach in [5] even suggests to built in
the half-duplex property in the system semantics to facilitate desynchronization.

There is, however, not much work on relationships between synchronous and
asynchronous compatibility. An exception are the approaches of Basu, Bultan,
Ouederni, and Salaün; see [1,2] for language-based and [15] for LTS-based se-
mantics. Their crucial assumption is usually synchronizability which requires, for
LTSes, a branching bisimulation between the synchronous and the asynchronous
versions of a system (with message consumption from buffers considered inter-
nal). Under this hypothesis [15] proposes methods to prove compatibility of asyn-
chronously communicating peers by checking synchronous compatibility. Their
central notion is UR compatibility which is close to our weak compatibility
concept but requires additionally deadlock-freeness. Obvious differences to our
work are that [15] considers multi-component systems while we study binary
compatibility relations. On the other hand, [15] considers closed systems while
we allow open systems which can be incrementally extended to larger ones. Also
our method for checking asynchronous compatibility is very different. In the first
part of our work we rely on half-duplex systems (instead of synchronizability)
and we show that for such systems synchronous and asynchronous compatibility
are even equivalent. In the second part of our work we drop any assumptions
and investigate powerful and decidable criteria for asynchronous compatibility
of systems which are neither half-duplex nor synchronizable.

Quite close to the first part of our work is the study of half-duplex systems
by Cécé and Finkel [9]. Due to their decidability result for unspecified recep-
tion (for two communicating CFSMs) it is not really surprising that we get an
effective characterization of asynchronous compatibility and a way to decide it
for components with finitely many states. A main difference to [9] is that we
consider also synchronous systems and relate their compatibility properties to

3



the asynchronous versions. Moreover, we deal with open systems as well and
consider a weak variant of asynchronous compatibility, which we believe adds
much power to the strong version. Finally, as explained above, a significant part
of our work deals also with systems which are not necessarily half-duplex.

2 I/O-Transition Systems and Their Compositions

We start with the definitions of I/O-transition systems and their synchronous
and asynchronous compositions which are the basis of the subsequent study.

Definition 1 (IOTS). An I/O-transition system is a quadruple
A = (statesA, startA, actA,−→A ) consisting of a set of states statesA, an initial
state startA ∈ statesA, a set actA = inA ∪ outA ∪ intA of actions being the
disjoint union of sets inA, outA and intA of input, output and internal actions
resp., and a transition relation −→A ⊆ statesA × actA × statesA.

We write s
a−→As

′ instead of (s, a, s′) ∈ −→A . For X ⊆ actA we write s
X−−→∗As

′

if there exists a (possibly empty) sequence of transitions s
a1−→As1 . . . sn−1

an−→As
′

involving only actions of X, i.e. a1, . . . , an ∈ X. A state s ∈ statesA is reachable

if startA
actA−−−→∗As. The set of reachable states of A is denoted by R(A).

Two IOTSes A and B are (syntactically) composable if their actions only
overlap on complementary types, i.e. actA ∩ actB ⊆ (inA ∩ outB) ∪ (inB ∩
outA). The set of shared actions actA ∩ actB is denoted by shared(A,B). The
synchronous composition of two IOTSes A and B is defined as the product of
transition systems with synchronization on shared actions which become internal
actions in the composition. Shared actions can only be executed together; they
are blocked if the other component is not ready for communication. In contrast,
internal actions and non-shared input and output actions can always be executed
by a single component in the composition. These (non-shared) actions are called
free actions in the following.

Definition 2 (Synchronous composition). Let A and B be two compos-
able IOTSes. The synchronous composition of A and B is the IOTS A ⊗ B =
(statesA × statesB , (startA, startB), actA⊗B ,−→A⊗B ) where actA⊗B is the dis-
joint union of the input actions inA⊗B = (inA ∪ inB) r shared(A,B), the out-
put actions outA⊗B = (outA ∪ outB) r shared(A,B), and the internal actions
intA⊗B = intA ∪ intB ∪ shared(A,B). The transition relation of A ⊗ B is the
smallest relation such that

– for all a ∈ actA r shared(A,B), if s
a−→As

′, then (s, t)
a−→A⊗B (s′, t) for all

t ∈ statesB,

– for all a ∈ actB r shared(A,B), if t
a−→B t

′, then (s, t)
a−→A⊗B (s, t′) for all

s ∈ statesA, and

– for all a ∈ shared(A,B), if s
a−→As

′ and t
a−→B t

′, then (s, t)
a−→A⊗B (s′, t′).

4



The synchronous composition of two IOTSes A and B yields a closed system
if it has no input and output actions, i.e. (inA ∪ inB) r shared(A,B) = ∅ and
(outA ∪ outB) r shared(A,B) = ∅, otherwise the system is open.

In distributed applications, implemented, e.g., with a message-passing mid-
dleware, usually an asynchronous communication pattern is used. In this paper,
we consider asynchronous communication via unbounded message queues. In
Fig. 1 two asynchronously communicating IOTSes A and B are depicted. A
sends a message a to B by putting it, with action aB, into a queue which stores
the outputs of A. Then B can receive a by removing it, with action a, from
the queue. In contrast to synchronous communication, there is a delay between
sending and reception. Similarly, B can send a message b to A by using a second
queue which stores the outputs of B. The system in Fig 1 is open: A has an
open output x to the environment and an open input y for messages coming
from the environment. Similarly B has an open input u and an open output v.
Additionally, A and B may have some internal actions.

B

b

a

Ω(A)

Ω(B)

= {b,v}Bout

inB
= {a,u}

= {...}Bint

a...

b ...y

x u

v

a

b

= {...}Aint

= {x,a}Aout

= {y,b}inA

A

Fig. 1. Asynchronous communication

To formalize asynchronous communication, we equip each communicating
IOTS with an “output queue”, which leads to a new IOTS indicated in Fig. 1
by Ω(A) and Ω(B) respectively. For this construction, we represent an output
queue as an (infinite) IOTS and then we compose it with a renamed version of
A where all outputs a of A (to be stored in the queue) are renamed to enqueue
actions of the form aB.

Definition 3 (IOTS with output queue).

1. Let M be a set of names and MB = {aB | a ∈ M} be disjoint from M. The
queue IOTS for M is QM = (M∗, ε, actQM ,−→QM ) where the set of states
is the set M∗ of all words over M , the initial state ε ∈ M∗ is the empty
word, and the set of actions actQM is the disjoint union of input actions
inQM = MB, output actions outQM = M and with no internal action. The
transition relation −→QM is the smallest relation such that

5



– for all aB ∈MB and states q ∈M∗ : q
aB−→QM qa (enqueue on the right),

– for all a ∈M and states q ∈M∗ : aq
a−→QM q (dequeue on the left).

2. Let A be an IOTS such that M ⊆ outA and MB ∩ actA = ∅. Let AB
M be

the renamed version of A where all a ∈M are renamed to aB. The IOTS A
equipped with output queue for M is given by the synchronous composition
ΩM (A) = AB

M ⊗QM . (Note that AB
M and QM are composable.)

The states of ΩM (A) are pairs (s, q) where s is a state of A and q is a
word over M . The initial state is (startA, ε). For the actions we have inΩM (A) =
inA, outΩM (A) = outA, and intΩM (A) = intA ∪MB. Transitions in ΩM (A) are:

– if a ∈ inA and s
a−→As

′ then (s, q)
a−→ΩM (A) (s

′, q),

– if a ∈ outA rM and s
a−→As

′ then (s, q)
a−→ΩM (A) (s

′, q),

– if a ∈M ⊆ outA then (s, aq)
a−→ΩM (A) (s, q),

– if a ∈ intA and s
a−→As

′ then (s, q)
a−→ΩM (A) (s

′, q),

– if aB ∈MB and s
a−→As

′ (i.e. s
aB−→AB

M
s′) then (s, q)

aB−→ΩM (A) (s
′, qa).

To define the asynchronous composition of two IOTSes A and B, we assume
that A and B are asynchronously composable which means that A and B are
composable (as before) and shared(A,B)B∩(actA∪actB) = ∅. Then, we equip A
with an output queue for those outputs shared with inputs of B, and, similarly,
we equip B with an output queue for those outputs shared with inputs of A.
The IOTSes ΩoutA∩inB (A) and ΩoutB∩inA(B) are then synchronously composed
which gives the asynchronous composition of A and B.

Definition 4 (Asynchronous composition). Let A, B be two asynchronously
composable IOTSes. The asynchronous composition of A and B is defined by
A⊗as B = ΩoutA∩inB (A)⊗ΩoutB∩inA(B).3

In the sequel we will briefly write Ω(A) for ΩoutA∩inB (A) and Ω(B) for
ΩoutB∩inA(B). The states of Ω(A) ⊗ Ω(B) are pairs ((sA, qA), (sB , qB)) where
sA is a state of A, the queue qA stores elements of outA ∩ inB , sB is a state
of B, and the queue qB stores elements of outB ∩ inA. The initial state is
((startA, ε), (startB , ε)). For the actions we have inΩ(A)⊗Ω(B) = inA⊗B ,
outΩ(A)⊗Ω(B) = outA⊗B , and intΩ(A)⊗Ω(B) = intA⊗B ∪ shared(A,B)B. For
the transitions in Ω(A)⊗Ω(B) we have two main cases:

1. Transitions which can freely occur in A or in B without involving any output
queue. These transitions change just the local state of A or of B. An example
would be a transition sA

a−→As
′
A with action a ∈ outA r inB which induces

a transition ((sA, qA), (sB , qB))
a−→Ω(A)⊗Ω(B) ((s′A, qA), (sB , qB)).

3 Note that ΩoutA∩inB (A) and ΩoutB∩inA(B) are composable.

6



2. Transitions which involve the output queue of A. There are two sub-cases
concerning dequeue and enqueue actions which are internal actions in Ω(A)⊗
Ω(B):
(a) a ∈ outA ∩ inB (hence a ∈ outQoutA∩inB

) and sB
a−→B s

′
B

then ((sA, aqA), (sB , qB))
a−→Ω(A)⊗Ω(B) ((sA, qA), (s′B , qB)).

(b) aB ∈ (outA ∩ inB)B (hence a ∈ inQoutA∩inB
) and sA

a−→As
′
A

then ((sA, qA), (sB , qB))
aB−→Ω(A)⊗Ω(B) ((s

′
A, qAa), (sB , qB)).

Transitions which involve the output queue of B are analogous.

3 Compatibility Notions

In this section we review our compatibility notions introduced in [4] for the
synchronous and in [3] for the asynchronous case. For synchronous compatibility
the idea is that whenever a component wants to issue an output a then its
communication partner should be ready to accept a as an input.

Definition 5 (Strong synchronous compatibility). Two IOTSes A and B
are strongly synchronously compatible, denoted by A←→ B, if they are compos-
able and if for all reachable states (sA, sB) ∈ R(A⊗B),

(1) ∀a ∈ outA ∩ inB : sA
a−→As

′
A =⇒ ∃ sB

a−→B s
′
B,

(2) ∀a ∈ outB ∩ inA : sB
a−→B s

′
B =⇒ ∃ sA

a−→As
′
A.

This definition requires that IOTSes should work properly together in any
environment, in contrast to the “optimistic” approach of [11] in which the ex-
istence of a “helpful” environment to avoid error states is sufficient. For closed
systems this makes no difference. In [4] we have introduced a weak version of
compatibility such that a component can delay an expected input and perform
some internal actions before. (This works well with weak refinement; see [4].)

Definition 6 (Weak synchronous compatibility). Two IOTSes A and B
are weakly synchronously compatible, denoted by A B, if they are compos-
able and if for all reachable states (sA, sB) ∈ R(A⊗B),

(1) ∀a ∈ outA ∩ inB : sA
a−→As

′
A =⇒ ∃ sB

intB−−−→∗B sB
a−→B s

′
B,

(2) ∀a ∈ outB ∩ inA : sB
a−→B s

′
B =⇒ ∃ sA

intA−−−→∗A sA
a−→As

′
A,

Now we turn to compatibility of asynchronously communicating components.
In this case outputs of a component are stored in a queue from which they can be
consumed by the receiver component. Therefore, in the asynchronous context,
compatibility means that if a queue is not empty, the receiver component must
be ready to take (i.e. input) the next removable element from the queue. This
idea can be easily formalized by requiring synchronous compatibility between
the communicating IOTSes which are enhanced by their output queues. We
distinguish again between strong and weak compatibility versions.

7



Definition 7 (Strong and weak asynchronous compatibility). Let A and
B be two asynchronously composable I/O-transition systems. A and B are strongly

asynchronously compatible, denoted by A
a←→ B, if Ω(A) ←→ Ω(B). A and B

are weakly asynchronously compatible, denoted by A a B, if Ω(A) Ω(B).

Example 1. Fig. 2 shows the behavior of a Maker and a User process. Here and
in the subsequent drawings we use the following notations: Initial states are
denoted by 0, input actions a are indicated by a?, output actions a by a!, and
internal actions a by τa. The maker expects some material from the environment
(input action material), constructs some item (internal action make), and then
it signals either that the item is ready (output action ready) or that the produc-
tion did fail (output action fail). Both actions are shared with input actions
of the user. When the user has received the ready signal it uses the item (inter-
nal action use). Maker and User are weakly synchronously compatible but not
strongly synchronously compatible. The critical state in the synchronous product
Maker ⊗ User is (2, 1) which can be reached with the transitions

(0, 0)
material−−−−−−→(1, 0)

make−−−−→(2, 0)
ready−−−−→(0, 1)

material−−−−−−→(1, 1)
make−−−−→(2, 1).

In this state the maker wants to send ready or fail but the user must first
perform its internal use action before it can receive the corresponding input.
The asynchronous composition Maker ⊗as User has infinitely many states since
the maker can be faster then the user. We will see, as an application of the forth-
coming results, that Maker and User are also weakly asynchronously compatible.

User:

use

0 1

ready?
fail?

τmake

0 2

ready!

1

fail!

material?

Maker:
τ

Fig. 2. Maker and User

4 Relating Synchronous and Asynchronous Compatibility

We are now interested in possible relationships between synchronous and asyn-
chronous compatibility. This is particularly motivated by the fact that for finite
IOTSes reachability, and therefore synchronous (strong and weak) compatibility,
are decidable which is in general not the case for asynchronous communication
with unbounded FIFO-buffers.

4.1 From Synchronous to Asynchronous Compatibility

In this section we study conditions under which it is sufficient to check strong
(weak) synchronous compatibility to ensure strong (weak) asynchronous com-
patibility. In general this implication does not hold. As an example consider the

8



two IOTSes A and B in Fig. 3. Obviously, A and B are strongly synchronously
compatible. They are, however, not strongly asynchronously compatible since A

may first put a in its output queue, then B can output b in its queue and then
both are blocked (A can only accept ack a while B can only accept ack b). In
Fig. 3 each IOTS has a state (the initial state) where a choice between an output
and an input action is possible. We will see (Cor. 1) that if such situations are
avoided synchronous compatibility implies asynchronous compatibility, and we
will even get more general criteria (Thm. 1) for which the following property P
is important.

A: 0

a? 1

2

b!

ack_a!

ack_b?

0

a! 1

2

b?

ack_a?

ack_b!

B:

Fig. 3. A ←→ B but not A
a←→ B

Property P: Let A and B be two asynchronously composable IOTSes. The
asynchronous system A ⊗as B satisfies property P if for each reachable state
((sA, qA), (sB , qB)) ∈ R(Ω(A)⊗Ω(B)) one of the following conditions holds:

(i) qA = qB = ε and (sA, sB) ∈ R(A⊗B).

(ii) qA = a1 . . . am 6= ε and qB = ε and there exists rA ∈ statesA such that:

(rA, sB) ∈ R(A⊗B) and rA
a1=⇒A . . .

am=⇒AsA.

(iii) qA = ε and qB = b1 . . . bm 6= ε and there exists rB ∈ statesB such that:

(sA, rB) ∈ R(A⊗B) and rB
b1=⇒B . . .

bm=⇒B sB .

To explain the notation
a

=⇒A , let a ∈ outA∩inB and FA = actArshared(A,B)

be the set of the free actions of A. Then s
a

=⇒As
′ stands for a sequence of tran-

sitions s
FA−−→∗As

a−→As
′ FA−−→∗As

′ such that the transition with a ∈ outA ∩ inB is
surrounded by arbitrary transitions in A involving only free actions of A. The

notation
b

=⇒B is defined analogously.

Property P expresses that (a) in each reachable state of the asynchronous
composition at least one of the two queues is empty and (b) the state of the
component where the output queue is not empty can be reached from a reachable
state in the synchronous product by outputting the actions stored in the queue,
possibly interleaved with free actions. Part (a) specifies half-duplex systems; see,
e.g., [9].

9



Definition 8. Let A and B be two asynchronously composable IOTSes. The
asynchronous system A ⊗as B is half-duplex, if for all reachable states
((sA, qA), (sB , qB)) ∈ R(Ω(A)⊗Ω(B)) it holds that qA = ε or qB = ε.

It turns out that also part (b) explained above holds for half-duplex systems,
i.e. property P characterizes this class of systems as stated in Lem. 1, (1) and
(2). In [9] it is shown that membership is decidable for half-duplex systems.
This corresponds to condition (3) of Lem. 1 which says that in the synchronous
product of A and B there is no reachable state where at the same time an output
from A to B and an output from B to A is enabled. Obviously this is decidable
for finite A and B.

Lemma 1. Let A and B be two asynchronously composable IOTSes. The fol-
lowing conditions are equivalent:

1. The asynchronous system A⊗as B satisfies property P.
2. The asynchronous system A⊗as B is half-duplex.
3. For each reachable state (sA, sB) ∈ R(A⊗B) and each transitions sA

a−→As
′
A

and sB
b−→B s

′
B either a /∈ outA ∩ inB or b /∈ outB ∩ inA.

Proof. (1) ⇒ (2) is trivial. (2) ⇒ (3) is straightforward by contradiction. The
direction (3) ⇒ (1) is non-trivial. It involves a complex case distinction on the
form of the transitions in the asynchronous composition. Interestingly only the
case of transitions with enqueue actions needs the assumption (3). ut

Theorem 1. Let A and B be two asynchronously composable IOTSes such that
one (and hence all) of the conditions in Lemma 1 are satisfied. Then the following
holds:

1. A←→ B =⇒ A
a←→ B.

2. A B =⇒ A a B.

Proof. The proof uses Lem. 1 for both cases. (1) Assume A ←→ B. We have to
show Ω(A)←→ Ω(B). We prove condition (1) of Def. 5. Condition (2) is proved
analogously. Let ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)), a ∈ outΩ(A) ∩ inΩ(B)

and (sA, qA)
a−→Ω(A) (s

′
A, q
′
A). Then qA has the form aa2 . . . am. By assumption,

Ω(A) ⊗ Ω(B) satisfies the property P. Hence, there exists rA ∈ statesA such

that (rA, sB) ∈ R(A⊗B) and rA
a

=⇒ArA
a2=⇒...

am=⇒AsA. Thereby rA
a

=⇒ArA is of

the form rA
FA−−→∗As

a−→As
′ FA−−→∗ArA. Since FA involves only free actions of A (not

shared with B), and since (rA, sB) ∈ R(A⊗B) we have that (s, sB) ∈ R(A⊗B).

Now we can use the assumption A←→ B which says that there exists sB
a−→B s

′
B .

Since a ∈ inB , we get a transition (sB , qB)
a−→Ω(B) (s

′
B , qB) and we are done.

(2) The weak case is a slight generalization of the proof of (1). The first part
of the proof is the same but then we use the assumption A B which says

that there exists sB
intB−−−→∗B sB

a−→B s
′
B consisting of a sequence of internal tran-

sitions of B followed by sB
a−→B s

′
B with a ∈ inB . Therefore we get transitions

(sB , qB)
intB−−−→ ∗

Ω(B) (sB , qB)
a−→Ω(B) (s

′
B , qB) and, since intB ⊆ intΩ(B) we are

done. ut

10



We come back to our discussion at the beginning of this section where we
have claimed that for I/O-transition systems which do not show states where
input and output actions are both enabled, synchronous compatibility implies
asynchronous compatibility. We must, however, be careful whether we consider
the strong or the weak case which leads us to two versions of I/O-separation.

Definition 9 (I/O-separated transition systems). Let A be an IOTS.

1. A is called I/O-separated if for all reachable states s ∈ R(A) it holds: If

there exists a transition s
a−→As

′ with a ∈ outA then there is no transition

s
a′−→As

′ with a′ ∈ inA.

2. A is called observationally I/O-separated if for all reachable states s ∈ R(A)

it holds: If there exists a transition s
a−→As

′ with a ∈ outA then there is no

sequence of transitions s
intA−−−→∗A sA

a′−→As
′ with a′ ∈ inA.

Obviously, observational I/O-separation implies I/O-separation but not the
other way round.

Lemma 2. Let A and B be two asynchronously composable IOTSes.

1. If A and B are I/O-separated and A←→ B, then one (and hence all) of the
conditions in Lemma 1 are satisfied.

2. If A and B are observationally I/O-separated and A B, then one (and
hence all) of the conditions in Lemma 1 are satisfied.

Proof. The proof of both cases is by contradiction. ut

The notion of I/O-separation appears in a more strict version, called input-
separation, in [13] and similarly as system without local mixed states in [9]. Part
(1) of Lem. 2 can be considered as a generalization of Lemma 4 in [13] which has
shown that input-separated IOTSes which are strongly compatible and form a
closed system are half-duplex. This result was in turn a generalization of Thm.
35 in [9]. Open systems and weak compatibility were not an issue in these ap-
proaches. With Theorem 1 and Lemma 2 we get:

Corollary 1. Let A and B be two asynchronously composable IOTSes.

1. If A and B are I/O-separated and A←→ B, then A
a←→ B.

2. If A and B are observationally I/O-separated and A B, then A a B.

Let us note that part (2) of Cor. 1 would not hold, if we would only assume
I/O-separation. As an application of Cor. 1 we refer to Ex. 1. Maker and User

are observationally I/O-separated, they are weakly synchronously compatible
and therefore, by Cor. 1(2), they are also weakly asynchronously compatible.

11



4.2 From Asynchronous to Synchronous Compatibility

This section studies the other direction, i.e. whether asynchronous compatibility
can imply synchronous compatibility. It turns out that for the strong case this is
indeed true without any further assumptions while for the weak case this holds
under the equivalent conditions of Lem. 1. In any case, we need for the proof
the following lemma which shows that all reachable states in the synchronous
product are reachable in the asynchronous product with empty output queues.

Lemma 3. Let A and B be two asynchronously composable IOTSes. For any
state (sA, sB) ∈ R(A⊗B), the state ((sA, ε), (sB , ε)) belongs to R(Ω(A)⊗Ω(B)).

Proof. The proof is straightforward by induction on the length of the derivation
of (sA, sB) ∈ R(A⊗B). ut

Theorem 2. For asynchronously composable IOTSes A and B it holds:

1. A
a←→ B =⇒ A←→ B.

2. If one (and hence all) of the conditions in Lemma 1 are satisfied, then
A a B =⇒ A B.

Proof. (1) Assume A
a←→ B, i.e. Ω(A)←→ Ω(B). We have to show A←→ B. We

prove condition (1) of Def. 5. Condition (2) is analogous.

Let (sA, sB) ∈ R(A⊗B), a ∈ outA∩inB and sA
a−→As

′
A. By Lem. 3, ((sA, ε), (sB , ε))

∈ R(Ω(A)⊗Ω(B)). Since sA
a−→As

′
A, we have a transition in Ω(A)⊗Ω(B) with

enqueue action for a: ((sA, ε), (sB , ε))
aB−→Ω(A)⊗Ω(B) ((s

′
A, a), (sB , ε)) and it holds

((s′A, a), (sB , ε)) ∈ R(Ω(A)⊗ Ω(B)). Then, there is a transition (s′A, a)
a−→Ω(A)

(s′A, ε). Since Ω(A) ←→ Ω(B) there must be a transition (sB , ε)
a−→Ω(B) (s

′
B , ε).

This transtion must be caused by a transition sB
a−→B s

′
B and we are done.

(2) Assume A a B, i.e. Ω(A) Ω(B). We have to show A B. We
prove condition (1) of Def. 6. Condition (2) is proved analogously.

Let (sA, sB) ∈ R(A ⊗ B), a ∈ outA ∩ inB and sA
a−→As

′
A. With the same rea-

soning as in case (1) we get ((s′A, a), (sB , ε)) ∈ R(Ω(A) ⊗ Ω(B)) and we get

a transition (s′A, a)
a−→Ω(A) (s′A, ε). Since Ω(A) Ω(B) there are transitions

(sB , ε)
intΩ(B)−−−−−→ ∗

Ω(B) (sB , qB)
a−→Ω(B) (s

′
B , qB). Since internal transitions of Ω(B)

do not involve any steps of Ω(A), we have ((s′A, a), (sB , qB)) ∈ R(Ω(A)⊗Ω(B)).
Due to the assumption that the conditions in Lemma 1 are satisfied,Ω(A)⊗Ω(B)
is half-duplex and therefore qB must be empty and the same holds for all interme-

diate queues reached by the transitions in (sB , ε)
intΩ(B)−−−−−→ ∗

Ω(B) (sB , qB). There-

fore no enqueue action can occur in these transitions. Noticing that intΩ(B) =

intB∪(outB∩ inA)B, we get (sB , ε)
intB−−−→ ∗

Ω(B) (sB , ε)
a−→Ω(B) (s

′
B , ε) and all these

transtions must be induced by transitions sB
intB−−−→∗B sB

a−→B s
′
B , i.e. we are done.

ut

12



As a consequence of Thms. 1, 2 we see that under the equivalent conditions
of Lem. 1, in particular when the asynchronous system is half-duplex, (weak)
synchronous compatibility is equivalent to (weak) asynchronous compatibility.

5 Weak Asynchronous Compatibility: The General Case

In this section we are interested in the verification of asynchronous compatibility
in the general case, where at the same time both queues of the communicating
IOTSes may be not empty. We focus here on weak asynchronous compatibility
since non-half duplex systems are often weakly asynchronously compatible but
not weakly synchronously compatible.4 A simple example would be two com-
ponents which both start to send a message to each other and after that each
component takes the message addressed to it from the buffer.

Example 2. Fig. 4 shows two IOTSes MA and MB which produce items for each
other. After reception of some material from the environment, MA produces an
item (internal action makeA) followed by either a signal that the item is ready
for use (output readyA) or a signal that the production did fail (output failA).
Whenever MA reaches its initial state it can also accept an input readyB and
then use the item produced by MB (internal action useB) or it can accept a
signal that the production of its partner did fail (input failB). The behavior of
MB is analogous. The asynchronous composition of MA and MB is not half-duplex;
both processes can produce and signal concurrently. Clearly, the system is not
weakly synchronously compatible. For instance, the state (2,2) is reachable in
the synchronous product and in this state each of the two processes wants to
output an action which the other is not able to accept. The system is also not
synchronizable in the sense of [15]. We will prove below that the system is weakly
asynchronously compatible.

useAuseB

τmakeA

2

1

failA!
0 failB?

readyB?materialA?

readyA!

3

MA:

2

1

failB!
0 failA?

readyA?materialB?

readyB!

3

MB:

τmakeB

ττ

Fig. 4. MA a MB but not MA MB.

In general, the problem of weak asynchronous compatibility is undecidable
due to the unbounded message queues. We develop in the following a criterion,

4 For the strong case this is not possible, see Thm. 2(1).

13



which is decidable if the underlying IOTSes are finite, which works for non
half-duplex systems, and which ensures weak asynchronous compatibility. The
idea is to use again synchronous products, but not the standard synchronous
composition of two IOTSes A and B but variants of it. First we focus only on one
direction of compatibility concerning the outputs of A which should be received
by B. Due to the weak compatibility notion B can, before it takes an input
message, execute internal actions. In particular, it can put outputs directed to A
in its output queue. (Remember that enqueue actions are internal). To simulate
this in a synchronous product we must artificially hide these outputs of B such
that they become free actions in the synchronous product. Consequently also
the corresponding inputs of A must be hidden. Then we require that outputs
of A directed to B can be received by B possibly after some internal actions
are executed, which now subsumes also the hidden outputs of B. A symmetric
requirement is obtained when we consider compatibility in the direction from B
to A. For the formalization of these ideas we first define hiding of actions.

Definition 10 (Hiding). Let A = (statesA, startA, actA,−→A ) be an IOTS
and H ⊆ inA ∪ outA. The hiding of H in A yields the IOTS A\H =
(statesA, startA, actA\H ,−→A ) where actA\H is the disjoint union of the in-
put actions inA\H = inA rH, the output actions outA\H = outA rH, and the
internal actions intA\H = intA ∪ intB ∪H.

Taking the synchronous compositions of IOTSes with hidden actions we can
formulate our requirements explained above by the following (symmetric) con-
ditions (a) and (b). Let A and B be two asynchronously composable IOTSes,
let outBA = outB ∩ inA and outAB = outA ∩ inB .

(a) For all reachable states (sA, sB) ∈ R(A\outBA⊗B\outBA), ∀a ∈ outA∩inB :

sA
a−→As

′
A =⇒ ∃ sB

int(B\outBA)−−−−−−−−→∗B sB
a−→B s

′
B .

(b) For all reachable states (sA, sB) ∈ R(A\outAB⊗B\outAB ), ∀b ∈ outB∩inA :

sB
b−→B s

′
B =⇒ ∃ sA

int(A\outAB )−−−−−−−−→∗A sA
b−→As

′
A.

Notation: We write A\outBA 99K B\outBA if condition (a) holds and
B\outAB 99K A\outAB if condition (b) holds.

Concerning (a), the essential difference between A ⊗ B and A\outBA ⊗
B\outBA is that shared actions belonging to outBA = outB ∩ inA must syn-
chronize in A⊗B while they can occur freely in A\outBA⊗B\outBA whenever
A or B can perform one of them. Hence A\outBA ⊗ B\outBA can have signif-
icantly more reachable states than A ⊗ B, in particular the ones reached by
autonomous outputs of B directed to A. These states are often relevant in the
asynchronous composition of A and B since outputs of B directed to A are in-
ternally put in the output queue of B. The same reasoning holds symmetrically
for condition (b).

The following lemma, used for the proof of Thm. 3, establishes an important
relationship between the reachable states considered in the synchronous prod-
ucts after hiding and those of the asynchronous composition of A and B. The

14



properties QA and QB stated in the lemma have a pattern similar to property
P in Sect. 4.1. In contrast to property P they are generally valid.

Lemma 4. For any two asynchronously composable IOTSes A and B both of
the following two properties QA and QB are satisfied.

Property QA: For each reachable state ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B))
one of the following two conditions holds:

(i) qA = ε and (sA, sB) ∈ R(A\outBA ⊗B\outBA),
(ii) qA = a1 . . . am 6= ε and there exists rA ∈ statesA such that: (rA, sB) ∈
R(A\outBA ⊗B\outBA) and rA

a1
V

A
. . .

am
V

A
sA.

The notation s
a
V

A
s′ stands for an arbitrary sequence of transitions in A

which contains exactly one transition with an output action in outA ∩ inB
and this output action is a.

Property QB: For each reachable state ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B))
one of the following two conditions holds:

(i) qB = ε and (sA, sB) ∈ R(A\outAB ⊗B\outAB ),
(ii) qB = b1 . . . bm 6= ε and there exists rB ∈ statesB such that: (sA, rB) ∈

R(A\outAB ⊗ B\outAB ) and rB
b1
V

B
. . .

bm
V

B
sB. The notation

b
V

B
is defined

analogously to
a
V

A
.

Proof. The initial state ((startA, ε), (startB , ε)) satisfies QA and QB . Then we

consider transitions ((sA, qA), (sB , qB))
a−→Ω(A)⊗Ω(B) ((s

′
A, q
′
A), (s′B , q

′
B)) and

show that if ((sA, qA), (sB , qB)) satisfies QA (QB resp.) then ((s′A, q
′
A), (s′B , q

′
B))

satisfies QA (QB resp.). Then the result follows by induction on the length of
the derivation to reach ((sA, qA), (sB , qB)) ∈ R(Ω(A)⊗Ω(B)). ut

Property QA(ii) shows that a state of component A where the output queue
is not empty can be reached from a state in the synchronous product of A\outBA

and B\outBA by outputting the actions stored in the queue, possibly interleaved
with arbitrary other actions of A which are not output actions directed to B.
Property QB(ii) is the symmetric property concerning the output queue of B.

Theorem 3. Let A and B be two asynchronously composable IOTSes such that
A\outBA 99K B\outBA and B\outAB 99K A\outAB holds. Then A and B are
weakly asynchronously compatible, i.e. A a B.

Proof. The proof relies on Lem. 4. We prove condition (1) of Def. 6. Condition
(2) is proved analogously.
Let ((sA, qA), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B)), a ∈ outΩ(A) ∩ inΩ(B) and

(sA, qA)
a−→Ω(A) (s′A, q

′
A). Then qA has the form aa2 . . . am. By Lem. 4, property

QA(ii) holds. Hence, there exists rA ∈ statesA such that (rA, sB) ∈ R(A\outBA⊗
B\outBA) and rA

a
V

A
rA

a2
V

A
. . .

am
V

A
sA. Thereby rA

a
V

A
rA is of the form

15



rA
YA−−→∗As

a−→As
′ YA−−→∗ArA with a ∈ outA ∩ inB and YA involves no action in

outAB = outA ∩ inB . Since outAB are the only shared actions of A\outBA and

B\outBA, the transitions in rA
YA−−→∗As induce transitions in A\outBA⊗B\outBA

without involving B. Therefore, since (rA, sB) ∈ R(A\outBA⊗B\outBA), we get
(s, sB) ∈ R(A\outBA⊗B\outBA). Now we can use the assumption A\outBA 99K

B\outBA which says that there exists sB
int(B\outBA)−−−−−−−−→∗B sB

a−→B s
′
B consisting of a

sequence of internal transitions in B\outBA followed by sB
a−→B s

′
B with a ∈ inB .

Now we notice that the internal actions of B\outBA are either internal in B, and
hence in Ω(B), or they are actions b ∈ outBA = outB ∩ inA, which induce inter-

nal enqueue actions bB in Ω(B). Thus we get transitions (sB , qB)
intΩ(B)−−−−−→ ∗

Ω(B)

(sB , qB)
a−→Ω(B) (s

′
B , qB) (where qB extends qB according to the elements that

have been enqueued with internal enqueue actions). Thus Ω(B) accepts a, pos-
sibly after some internal actions, and we are done. ut

Example 3. To apply Thm. 3 to Ex. 2 we have to prove MA\{readyB,failB} 99K
MB\{readyB,failB} and MB\{readyA,failA} 99K MA\{readyA,failA}. For the
former case, Fig. 5 shows the IOTS MA after hiding its inputs readyB,failB

shared with outputs of MB and the IOTS MB after hiding its outputs. We will
check only this case, the other one is analogous. We have to consider the reachable
states in the synchronous product MA\{readyB,failB} ⊗ MB\{readyB,failB}
and when an output readyA or failA is possible in MA\{readyB,failB}. These
states are (2,0), (2,1), (2,2) and also (2,3). In state (2,0) any output readyA

or failA is immediately accepted. In all other states MB\{readyB,failB} can
perform some internal actions first before it accepts readyA or failA. Hence,
MA\{readyB,failB} 99K MB\{readyB,failB} holds. We want to point out par-
ticularly state (2,2). In this state MB\{readyB,failB} can perform the internal
action τreadyB! before accepting readyA or failA. The internal action τreadyB! has
been obtained from hiding the output action readyB in MB. In this way we have
simulated in the synchronous product the (internal) enqueue action readyBB

that would have happened by MB in the asynchronous composition.5

MB\{readyB,failB}:

useB

τmakeA τreadyB?

τfailB?

τreadyB!

τfailB!

τ
useA

2

1

failA!
0

materialA?

readyA!

3 2

1

0 failA?

readyA?materialB?

3

τmakeB

MA\{readyB,failB}:

τ

Fig. 5. Compatibility check: MA\{readyB,failB} 99K MB\{readyB,failB}

5 Our technique would also work for the non synchronizable system in [15], Fig. 4.

16



6 Conclusion

We have proposed techniques to verify asynchronous compatibility by using cri-
teria that are based on synchronous composition. Our results lead to the follow-
ing verification methodology: Assume given two asynchronously communicating
components, each one having finitely many local states. First we check whether
condition (3) of Lem. 1 holds (in the synchronous product) which is decidable.
It characterizes half-duplex systems. If the answer is positive, then we can de-
cide strong and weak asynchronous compatibility using Thms. 1 and 2. If the
answer is negative, then our system is not half-duplex. In this case we check the
decidable conditions formulated in Thm. 3. If they are satisfied then the system
is weakly asynchronously compatible. If they are not satisfied then all examples
we have considered so far were in fact not weakly asynchronously compatible;
but since the problem is undecidable we cannot expect that this is always the
case. To illustrate this issue we consider a simple example with two components
A and B such that A has one input action a and one output action b, and B has
one input action b and one output action a. A has three states and the following

two transitions startA
a?−→As

′
A

b!−→As
′′
A. B has only the initial state startB and no

transition. Then it is trivial that A and B are weakly asynchronously compati-
ble, since in the asynchronous composition A will never receive a message from
B and therefore A will never put b in its output buffer. However, our criterion
A\outBA 99K B\outBA is not satisfied since outBA = {a} is hidden in A\outBA

and therefore the state (s′A, startB) is reachable in R(A\outBA ⊗ B\outBA).
Then A\outBA 99K B\outBA would require that B\outBA is able to receive b
in its initial state which is not the case. As a consequence of this discussion our
conjecture is that the criterion of Thm. 3 may not work only if there are states
in which one component has a transition with an output action which will never
be executed in the composition due to missing input before.

The verification conditions studied in this paper involve only synchronous
compatibility checking. Therefore we can use the MIO Workbench [4], an Eclipse-
based verification tool for modal I/O-transition systems, to verify asynchronous
compatibility.

Thm. 3 relies on Lem. 4 which is generally valid and could be used to support
the verification of other compatibility problems as well, e.g., to prove that a com-
ponent waiting for some input will eventually get it. It would also be interesting
to see to what extent our techniques can be applied to the optimistic compati-
bility notion used for interface automata [11] if they are put in an asynchronous
environment. Concerning larger systems, the current approach suggests to add
incrementally one component after the other and to verify compatibility in each
step. But we also want to extend our work and study asynchronous compatibility
of multi-component ensembles.

Acknowledgement. We are very grateful to Alexander Knapp for his suggestion to
use output queues (instead of input queues) for the formalization of asynchronous
compatibility.

17



References

1. Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realiz-
ability. In Proc. ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL, pages 191–202. ACM, 2012.

2. Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for veri-
fication of asynchronously communicating systems. In Proc. Verification, Model
Checking, and Abstract Interpretation VMCAI, LNCS, pages 56–71. Springer, 2012.

3. Sebastian S. Bauer, Rolf Hennicker, and Stephan Janisch. Interface theories for
(a)synchronously communicating modal I/O-transition systems. In Proceedings
Foundations for Interface Technologies, FIT, EPTCS 46, pages 1–8, 2010.

4. Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker. On
weak modal compatibility, refinement, and the MIO Workbench. In Proc. 16th

Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’10), volume 6015 of LNCS, pages 175–189. Springer, 2010.

5. Harsh Beohar and Pieter J. L. Cuijpers. Avoiding diamonds in desynchronisation.
Sci. Comput. Program., 91:45–69, 2014.

6. Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J.
ACM, 30(2):323–342, 1983.

7. Carlos Canal, Ernesto Pimentel, and José M. Troya. Compatibility and inheritance
in software architectures. Sci. Comput. Program., 41(2):105–138, 2001.

8. Josep Carmona and Jetty Kleijn. Compatibility in a multi-component environ-
ment. Theor. Comput. Sci., 484:1–15, 2013.

9. Gérard Cécé and Alain Finkel. Verification of programs with half-duplex commu-
nication. Inf. Comput., 202(2):166–190, 2005.

10. Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable topologies
for communicating automata with FIFO and bag channels. In CONCUR 2014 -
Concurrency Theory, volume 8704 of LNCS, pages 281–296. Springer, 2014.

11. Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proc. 9th ACM
SIGSOFT Ann. Symp. Foundations of Software Engineering (FSE’01), pages 109–
120, Wien, 2001. ACM Press.

12. Serge Haddad, Rolf Hennicker, and Mikael H. Møller. Channel properties of asyn-
chronously composed Petri nets. In Application and Theory of Petri Nets and
Concurrency, volume 7927 of LNCS, pages 369–388. Springer, 2013.

13. Rolf Hennicker, Stephan Janisch, and Alexander Knapp. Refinement of compo-
nents in connection-safe assemblies with synchronous and asynchronous commu-
nication. In Foundations of Computer Software. Future Trends and Techniques
for Development, 15th Monterey Workshop 2008, volume 6028 of LNCS, pages
154–180. Springer, 2008.

14. Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O au-
tomata for interface and product line theories. In 16th European Symposium on
Programming, ESOP, LNCS, pages 64–79. Springer, 2007.

15. Meriem Ouederni, Gwen Salaün, and Tevfik Bultan. Compatibility checking for
asynchronously communicating software. In Formal Aspects of Component Soft-
ware - 10th International Symposium, FACS, LNCS, pages 310–328. Springer, 2013.

16. Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud, Axel
Legay, and Roberto Passerone. A modal interface theory for component-based
design. Fundam. Inform., 108(1-2):119–149, 2011.

18


	On Synchronous and Asynchronous Compatibility of Communicating Components

