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Abstract

We show how the abstract concept of a labeled interface theory can be canonically ex-
tended to an abstract framework for component interfaces with ports. The resulting
theory satisfies itself the general laws of an interface theory for composition, refinement
and communication compatibility. The ports of a component interface represent the
interaction points of a component. Each port is equipped with a contract specifying
the assumptions on and the guarantees for the environment of a component. We study
reliable component interfaces and we provide methodological guidelines how to design
reliable interfaces and how to adapt them to changing environments. Two instances of
our approach are presented. First, we consider modal component interfaces such that
component behaviors and the assume and guarantee behaviors of ports are given in terms
of modal I/O-transition systems with weak notions of refinement and compatibility. The
second instance uses I/O-predicates as interface specifications.

Keywords: Reactive components, interface specifications, contracts, refinement,
compatibility, modal I/O-transition systems, I/O-predicates.

1. Introduction

The development of large, reliable component systems relies heavily on the use of
interfaces. According to the state of practice, interfaces are typically described using
Word/Excel text documents or modeling languages such as UML/XML which are known
to be ambiguous. Hence, rigorous development methods are mandatory which support
interface composition, stepwise refinement and the consideration of compatibility issues
when components interact. These requirements together with concise rules specifying
how the different dimensions of system development should work together are formulated
in an abstract way in the seminal work of De Alfaro and Henzinger [17]. There the notion
of an interface theory has been introduced which consists of an interface algebra together
with a component algebra.
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In this paper we follow the spirit of De Alfaro and Henzinger to study abstract
concepts and rules that later on can be instantiated by concrete frameworks. But we will
focus more specifically on the domain of reactive component systems such that interfaces
should be equipped with additional structure that makes more explicit their possible
connections. For that purpose we rely on ports as interaction points of a component as
it is quite standard in many design languages.

Independently, a number of contract theories, based on assume-guarantee (AG) rea-
soning have been developed, with a similar aim of approaching compositional design.
Contract theories differ from interface theories in that they strictly follow the principle of
separation of concerns. They separate the specification of assumptions from specification
of guarantees, a choice largely inspired by early ideas on manual proof methods of Misra,
Chandy [36] and Jones [28], along with the wide acceptance of the pre-/postcondition
style of specification in programming [35, 42], and more general semantical rules inde-
pendent from language representation [14].

In [5], we have shown how a theory of contracts can be built on top of a given abstract
specification theory. Contracts are just pairs (A,G) of an assumption and a guarantee
specification. We have shown in [5] how the contract theory can be instantiated by
using modal transitions systems [40] with strong modal refinement. This approach,
however, did only work for specification theories which admit a “quotient” construction
as specification building primitive and therefore could not be applied to instances that
support weak refinement abstracting away silent τ -transitions [9] which is needed in
many examples. Also compatibility predicates concerning the communication between
components have not been integrated in [5]. Moreover, the entities of our contract theory
were just pairs (A,G) disallowing any structural splitting which is necessary if we want
to deal with components with more than one port.

In the current paper we first introduce the notion of a labeled interface theory in
Sect. 2, which resembles an interface theory in the sense of De Alfaro and Henzinger
with the additional provision that a set of labels is assigned to any interface (which
intuitively represents an action alphabet). In Sect. 3, a concrete instance of a labeled
interface theory is provided in terms of modal I/O-transition systems [31] with weak
modal refinement according to [27] and weak modal compatibility in the sense of [9].

We show, in Sect. 4, how a theory of component interfaces can be defined on top of
any framework satisfying our abstract rules of a labeled interface theory. A distinguished
feature of component interfaces is that they have a set of ports such that each port P is
equipped with a port contract (AP , GP ) specifying the assumptions and guarantees for
the environment that is going to be connected on this particular port. All notions of an
interface theory, i.e. composition, refinement and compatibility, are propagated to the
level of component interfaces which themselves are shown to satisfy the requirements of
an interface theory. We also discuss reliability of component interfaces which means that
the component frame, intended to specify the overall visible behavior of a component,
supports the guarantees shown on the ports. We prove that reliability is compositional if
a single connection between component interfaces is established. We also study multiple
connections and provide sufficient conditions to ensure reliability preservation in this
case. As a proof of concept, we instantiate in Sect. 5 our generic constructions and build
a modal theory of component interfaces on top of the labeled interface theory with modal
I/O-transitions systems (MIOs). We consider a small case study concerning a message
transmission system. In Sect. 6 we propose general methods for the design and adaptation



of reliable component interfaces and illustrate them with the MIO examples. In Sect. 7
we discuss another instantiation of our approach using predicates over input/output
variables as interface specifications. We finish with some concluding remarks in Sect. 8.

This paper is a significantly restructured and extended revision of the conference pa-
per [7]. The new approach relies on a symmetric compatibility notion (inherited from the
underlying interface theory) instead of a unidirectional environment correctness notion.
This simplifies the approach and makes it better accessible. Much emphasis has been put
on the notion of reliability of component interfaces, a notion which is now motivated in
detail and illustrated by examples. An additional section has been included that presents
elaborated methods to design and to adapt component interfaces. They are illustrated
by our case study. All theorems and facts are justified by detailed proofs.

Related Work. As observed above, our work extends classical interface theories [17, 19,
13] with an explicit treatment of assumptions-guarantees. Other works on interface
automata, e.g. [21], exploit the concept of assumption and guarantee to improve the
efficiency of compatibility checking. Those works, which build on former approaches
developed for concurrent transition systems [15, 22, 29], are not comparable to our ap-
proach as they exploit assumption and guarantee at the operational level, but not at
the design one. An intermediary step between those approaches is the work of Parizek
and Plasil [37] that proposes a compositional methodology to reduce the verification of a
composite component to the one of a series of smaller verifications on single components.
Recently in [11, 10], a similar approach to the one of [37] was followed in the BIP toolset
developed by Sifakis et al. [3].

Independently, a number of contract theories, based on explicit assume-guarantee rea-
soning have been developed, with a similar aim of approaching the compositional design.
Among them, one finds the work of Meyer [35], that is based on pre- and postconditions
as state predicates and invariants for the system itself. This approach, which builds on
seminal ideas proposed by Dijkstra and Lamport [20, 30], is similar to ours in the sense
that pre- and postconditions shall be viewed as assumption and guarantee, respectively.
In [33] this idea has been further developed by specifying pre/postconditions not only for
the provided methods of a component but also for the required ones such that correctness
of matching can be checked when components are composed.

Some works [2] introduced contracts in the refinement calculus. In this formalism,
processes are described with guarded command operating on shared variables. This
formalism is best suited to reason on untimed system, while our approach is general and
could be instantiated on other types of data. Additionally, each of the above mentioned
work suffers from the absence of multiple treatment of assumptions/guarantees and rely
on a unique language while our abstract language can work with arbitrary interface
theories.

More recently, Benveniste et al.[12] proposed a contract theory where assumptions
and guarantees are represented by trace structures. While this work is of clear interest,
it suffers from the absence of effective representation for the embedded interface theory.
Extensions such as the one proposed in [39, 23] leverage this problem but ignore the
multiple treatment of assumptions and guarantees. None of the approaches proposes a
methodology for designing and adapting reliable components.



2. Labeled Interface Theories

The idea of an interface theory is to capture basic requirements that should be sat-
isfied by any formal framework supporting behavior specifications of components. A
formal notion of an abstract interface theory was, to our knowledge, first proposed by de
Alfaro and Henzinger in [17]. In their work, an interface theory consists of an interface
algebra together with a component algebra to distinguish between interface specifica-
tions and component implementations. Later, in [18], the authors introduced the term
interface language which simplifies the approach by considering just interfaces requiring
independent implementability and incremental design. Our notion of an interface theory
is close to an interface language in the sense of [18].

We assume given a class S of interface specifications and a composition operator ⊗ to
combine interfaces to larger ones. The composition operator is, in general, partial since
it is not always syntactically meaningful to compose interfaces. An interface theory must
offer a refinement relation ≤ to relate “concrete” and “abstract” specifications, such that
S ≤ T means that S is a correct refinement of T . Refinement must be compositional,
i.e. it must be preserved by interface composition which is expressed by requirement (I1)
below. An interface theory must also address the relationship between communicating
components. For this purpose the binary compatibility predicate � is introduced, such
that S � T means that there is no communication error when S and T interact. The
compatibility predicate is orthogonal to the refinement relation; the former concerns
the “horizontal” dimension while the latter concerns the “vertical” dimension of system
development. Both relations must be compatible in the sense that compatibility must
be preserved by refinement as stated in requirement (I2) below.

Definition 1 (Interface Theory). An interface theory is a quadruple (S,⊗,≤,�)
consisting of

� a set S of interface specifications,

� a partial, commutative1 and associative2 composition operator ⊗ : S×S→ S;
we call S and T composable, if S ⊗ T is defined,

� a reflexive and transitive refinement relation ≤ ⊆ S×S; we call S and T equivalent,
written S ≈ T , if S ≤ T and T ≤ S,

� a symmetric compatibility predicate �⊆ S ×S such that S � T implies S ⊗ T
defined.

For all interfaces S, S′, T, T ′ ∈ S the following properties are required:

I1. Compositional Refinement: If S ⊗ T is defined, S′ ≤ S and T ′ ≤ T ,
then S′ ⊗ T ′ is defined and S′ ⊗ T ′ ≤ S ⊗ T .

I2. Preservation of Compatibility: If S � T , S′ ≤ S and T ′ ≤ T , then S′ � T ′.

1Commutativity means that for all S, T ∈ S, if S⊗T is defined then T⊗S is defined and S⊗T = T⊗S
are set-theoretically equal.

2Associativity means that for all S, T,R ∈ S, if S, T and R are pairwise composable then (S⊗T )⊗R
and S ⊗ (T ⊗R) are defined and (S ⊗ T )⊗R = S ⊗ (T ⊗R).



Interface theories provide a nice abstract framework focusing on rudimentary require-
ments for component-based design. But there is a lack of structure to express explicit,
distinguished interaction points when components are composed. To cope with this issue
we propose a simple extension of interface theories such that any interface is equipped
with a set of labels. It turns out that this simple supplement is sufficient to develop a
full, generic theory of component interfaces with contracts on ports. Intuitively labels
determine the visible actions supported by an interface. Some straightforward proper-
ties for the labeling of interfaces are required by conditions (L1) - (L3). (L1) follows
the idea that communication happens via shared labels which are not available anymore
after composition; thus we rely on binary communication. (L2) expresses that interfaces
without shared labels can always be composed (in practice, this would lead to arbitrary
interleaving). (L3) states that abstract and concrete interfaces have the same labels.3

Definition 2 (Labeled Interface Theory). A labeled interface theory is a tuple
(S,⊗,≤,�,L, `) such that (S,⊗,≤,�) is an interface theory extended by

� a set L of labels,

� a function ` : S→ ℘fin(L) assigning a finite set of labels to each interface.

For all interfaces S, T,R ∈ S the following properties are required:

L1. If S ⊗ T is defined, then `(S ⊗ T ) = (`(S) ∪ `(T )) \ (`(S) ∩ `(T )).

L2. If `(S) ∩ `(T ) = ∅, then S ⊗ T is defined.

L3. If S ≤ T , then `(S) = `(T ).

For any finite, non-empty index set I we consider I-sorted sets (Si)i∈I (i.e. finite
families) of interfaces. We call (Si)i∈I composable, if the single interfaces are pairwise
composable and if each label of each Si is shared with at most one other interface Sj
(j 6= i). Obviously, any subset of a composable set of interfaces is composable. We extend
the binary notion of interface composition to I-sorted sets of composable interfaces by
the following inductive definition along the size |I| of I:

� If |I| = 1 and I = {i}, then ⊗(Si)i∈I = Si.

� If |I| > 1 and (Si)i∈I is composable, then ⊗(Si)i∈I , ⊗(Si)i∈I′ ⊗ Sj for some
subset I ′ ⊆ I with |I ′| = |I| − 1 and {j} = I \ I ′.

⊗(Si)i∈I is well-defined, since by commutativity and pseudo-associativity of the bi-
nary composition the definition is independent of the choice of I ′.

3At the cost of a more technical development, this condition could be relaxed by allowing more labels
for refinements.
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Figure 1: Modal I/O-transition system

3. Labeled Modal Interface Theory

As a concrete instance of our approach we will use modal I/O-transition systems
(MIOs). Modal transition systems (MTS) have been introduced in [32] and later extended
by Input/Output alphabets in [31]. In [9] we have introduced an interface theory for MIOs
with a novel weak compatibility predicate and a weak refinement relation for MIOs (on
the basis of weak refinement for MTS in [27]). As a verification tool we use the MIO
Workbench presented first in [9]. We have chosen MIOs as our basic formalism since
they allow us to distinguish between transitions which are optional (may) or mandatory
(must) and thus support very well loose specifications and refinements. In particular, the
ability of may-transitions will be very useful to specify contracts with loose assumptions
later on.

In this section we recall the interface theory of MIOs using the notions of [9] and
we extend them by introducing labels explicitly. Compared to [9] we will incorporate
a minor syntactic modification, since we will not use explicit names for internal (silent)
actions but represent them uniformly by τ .

We assume a global set of (observable) action labels Lact and a distinguished (non-
observable) action τ /∈ Lact . An I/O-labeling L = (I,O) consists of disjoint sets of
input labels I ⊆ Lact and output labels O ⊆ Lact . A modal I/O-transition system
M = (LM , SM , s0,M , M , M ) consists of an I/O-labeling LM = (IM , OM ), a finite set
of states SM , an initial state s0,M ∈ SM , a may-transition relation M ⊆ SM × (IM ∪
OM ∪ {τ})× SM , and a must-transition relation M ⊆ M , i.e. any must-transition is
also a may-transition. The set of the reachable states from the initial state s0,M of M

w.r.t. may-transitions is denoted by R(M). For l ∈ (IM ∪OM ∪ {τ}), we write s l
M s′

for (s, l, s′) ∈ M and s l
M s′ for (s, l, s′) ∈ M . Since M ⊆ M , s l

M s′ implies

s l
M s′.
Figure 1 shows the pictorial representation of MIOs used in the following. The I/O-

labeling of a MIO is shown on its frame. Input and output labels are indicated by
the names on the incoming and outgoing arrows. On the transitions, input labels are
suffixed with “?” and output labels are suffixed with “!”. May-transitions are drawn
with a dashed arrow; must-transitions with a solid arrow.

All facts and definitions that we provide for particular MIOs are independent of the
names of the states of the MIO. In fact we will use MIOs as representatives of their
isomorphism classes w.r.t. bijections on states and the set of those isomorphism classes



is denoted by SMIO .4 It is straightforward to extend MIOs by a labeling function
`act : SMIO → ℘fin(Lact) defined by `act(M) = IL ∪ OL for each MIO M with I/O-
labeling L = (IL, OL).

3.1. Composable MIOs and Their Synchronous Composition

Two MIOs M , N with labelings LM = (IM , OM ) and LN = (IN , ON ) resp. are
composable, if their labels overlap only on complementary types, i.e. `act(M)∩`act(N) =
(IM ∩ON )∪(IN ∩OM ). Hence, whenever a label is shared, then it is either an input label
of the first MIO and an output label of the second or conversely. A finitely indexed set
(Mi)i∈I of MIOs is composable, if the single MIOs Mi are pairwise composable. Then
labels of each Mi can only be shared with at most one other MIO Mj (j 6= i) of the
family.

The synchronous composition of two composable MIOs is defined as the usual product
of transition systems such that transitions with shared actions are performed (only)
simultaneously. After composition the shared labels become invisible modeled by τ . A
synchronization transition in the composition is a must-transition only if both of the
single transitions are must-transitions. Formally, the synchronous composition of two
composable MIOs M and N with labelings LM = (IM , OM ) and LN = (IN , ON ) resp.
is given by the MIO

M ⊗sy N = (L, SM × SN , (s0,M , s0,N ), , )

such that L = ((IM ∪ IN ) \ (`act(M) ∩ `act(N)), (OM ∪ON ) \ (`act(M) ∩ `act(N))) and
the transition relations are the smallest relations satisfying:

� for all a ∈ `act(M) ∩ `act(N),

– if s a
M s′ and t a

N t′, then (s, t) τ (s′, t′),

– if s a
M s′ and t a

N t′, then (s, t) τ (s′, t′),

� for all a ∈ (`act(M) \ `act(N)) ∪ {τ},

– if s a
M s′, then (s, t) a (s′, t) for all t ∈ SN ,

– if s a
M s′, then (s, t) a (s′, t) for all t ∈ SN ,

� for all a ∈ (`act(N) \ `act(M)) ∪ {τ},

– if t a
N t′, then (s, t) a (s, t′) for all s ∈ SM ,

– if t a
N t′, then (s, t) a (s, t′) for all s ∈ SM .

4By considering isomorphism classes we get commutativity of MIO composition as required for an
interface theory.



An example for synchronous composition of MIOs will be given in Sect. 5 when the
frames of the interfaces of a Broker and a Client component are composed. The syn-
chronous composition of MIOs is commutative, since we consider MIOs up to bijections
between the sets of states. The next lemma shows that synchronous composition is
pseudo-associative and that the conditions (L1) and (L2) required for labeled interface
theories are satisfied by MIOs.

Lemma 1. Let M,N and R be MIOs.

1. If M,N and R are pairwise composable, then (M ⊗sy N) ⊗sy R and M ⊗sy (N ⊗sy

R) are defined and (M ⊗sy N) ⊗sy R = M ⊗sy (N ⊗sy R).

2. If M ⊗sy N is defined, then `act(M ⊗sy N) = (`act(M) ∪ `act(N)) \ (`act(M) ∩
`act(N)).

3. If `act(M) ∩ `act(N) = ∅, then M ⊗sy N is defined.

Proof. 1.: If M,N and R are pairwise composable, then the notion of composability
implies that M ⊗sy N and R are composable and that M and N ⊗sy R are composable.
Then it is straightforward to prove that (M ⊗sy N) ⊗sy R = M ⊗sy (N ⊗sy R) by
taking into account that we consider MIOs up to bijections between states.
2. is obvious according to the construction of the labeling of composed MIOs.
3. follows from the definition of composability. �

3.2. Weak Modal Refinement

The basic idea of modal refinement is that required (must) transitions of an abstract
specification must also occur in the concrete specification. Conversely, allowed (may)
transitions of the concrete specification must be allowed by the abstract specification.
We will use the weak form of modal refinement introduced by Hüttel and Larsen [27]
which supports observational abstraction, i.e., silent transitions can be dropped and
inserted as long as the modalities and the simulation relation are preserved.

For denoting sequences of transitions that abstract from silent transitions, we use
the following notation. Let M be a MIO with I/O-labeling LM = (IM , OM ). We write

s τ̂
M s′ if there is a (possibly empty) sequence of may-transitions from s to s′ all labeled

by τ , and likewise for must-transitions. For l ∈ (IM ∪OM ), we write s l̂
M s′ for s τ̂

M

r l
M t τ̂

M s′, and likewise for must-transitions.
Let M and N be MIOs with the same I/O-labeling. A relation R ⊆ SM × SN is a

weak modal refinement relation between M and N if for all (sM , sN ) ∈ R and for all
l ∈ `act(M) = `act(N) the following holds:

1. sN
l
N s′N ⇒ ∃s′M ∈ SM . sM

l̂
M s′M ∧ (s′M , s

′
N ) ∈ R.

2. sN
τ
A s′N ⇒ ∃s′M ∈ SM . sM

τ̂
M s′M ∧ (s′M , s

′
N ) ∈ R.

3. sM
l
M s′M ⇒ ∃s′N ∈ SN . sN

l̂
N s′N ∧ (s′M , s

′
N ) ∈ R.

4. sM
τ
M s′M ⇒ ∃s′N ∈ SN . sN

τ̂
N s′N ∧ (s′M , s

′
N ) ∈ R.



Remember that any must-transition is also a may-transition. Hence, by rules 3. and
4., must-transitions in M must be allowed by corresponding may-transitions in N .

M is a weak modal refinement of N , written M ≤∗m N , if there exists a weak modal
refinement relation R between M and N such that (s0,M , s0,N ) ∈ R. If all transitions
of M and N are must-transitions weak refinement coincides with weak bisimulation.
Obviously, weak modal refinement is reflexive and transitive. Two MIOs M and N
are equivalent, written M ≈∗m N , if M ≤∗m N and N ≤∗m M , i.e. M co-simulates
N . Examples of weak modal refinements are given later in the context of component
interfaces.

3.3. Weak modal compatibility

For communication compatibility of MIOs we follow the implicit assumption, taken
from interface automata [16, 18], that outputs are autonomous and must be accepted
by a communication partner while inputs are subject to external choice and need not
to be served. We say that two MIOs M and N are weakly modally compatible, denoted
by M �m

w N , if they are composable and in each reachable state of the composition,
if M may send out an output directed to N then N must accept the corresponding
input possibly after a delay caused by silent must-transitions of N and the same must
hold in the other direction. Formally this means, see [9], that for each reachable state
(s, t) ∈ R(M ⊗sy N), if there exists s a

M s′ with a ∈ OM ∩ IN , then there exists
t τ̂

N t′′ a
N t′ and the symmetric condition must hold for outputs of N . Examples of

weak modal compatibility are given below in Sect. 5.
Now we have all notions provided to present the modal labeled interface theory.

Theorem 2 (Modal labeled interface theory). (SMIO ,⊗sy,≤∗m,�m
w ,Lact , `act) is a

labeled interface theory.

Proof. From the results in [9] it follows that (SMIO ,⊗sy,≤∗m,�m
w ) is an interface theory

in the sense of Def. 2. In particular, weak modal refinement is compositional w.r.t.
synchronous composition of MIOs and weak modal compatibility is preserved by weak
modal refinement. Moreover, by Lemma 1, the conditions (L1) and (L2) for labeled
interface theories are satisfied and condition (L3) is trivially satisfied by definition.

4. A Theory of Component Interfaces with Port Contracts

In this section, we show how a theory of component interfaces can be constructed
on top of any arbitrary labeled interface theory. Our goal is not to define yet another
language for component-based design but to focus on fundamental, abstract properties
of component interfaces refining the ideas of an interface theory by introducing more
structure. In addition to pure interfaces, we require that component interfaces define
access points in terms of distinguished ports that are used for connecting components.
In the remainder of this section we assume given an arbitrary labeled interface theory
(S,⊗,≤,�,L, `).



4.1. Port Contracts and Component Interfaces

We follow the idea that a port is an interaction point of a component. To specify the
legal interactions on a port often port protocols are used, e.g. [1, 25]. The disadvantage
of using such port protocols is that it is often not feasible to figure out precisely what
are the guarantees of a component at a port and what is assumed from the environment
for communication on that port. To overcome this deficiency we propose explicit distin-
guished guarantee and assumption specifications for each port of a component following
the principles of assume/guarantee reasoning; cf. e.g. [28]. Hence we consider contracts
on ports where both assumptions and guarantees are interface specifications of our un-
derlying interface theory. We require that guarantees and assumptions on a port are
compatible to ensure correct communication between component implementations and
component environments.

Definition 3 (Port Contract). A port contract is a pair (A,G) of composable inter-
face specifications A,G ∈ S such that `(A) = `(G) and G� A. We write `(P ) for `(G)
(= `(A)) and call `(P ) the port labels of P .

Port contracts can be refined following the co/contravariant approach where assump-
tions can be relaxed in the refinement while guarantees may be strengthened.

Definition 4 (Port Contract Refinement). A port contract P ′ = (A′, G′) refines a
port contract P = (A,G), written P ′ v P , if G′ ≤ G and A ≤ A′.

A component interface consists of two parts. First, any component interface has a
finite set of ports with associated contracts. Secondly, following the terminology in [38],
there is a frame specification describing the possible visible behaviors of the full compo-
nent. The idea is that the frame shows the dependencies of actions on the single ports.
We require that the label sets of the ports are pairwise disjoint and that the label set of
the component frame is the disjoint union of the port labels. Moreover, the frame must
be composable with assumptions on ports. This is necessary to guarantee that whenever
the assumptions on the ports are met by the environment one can indeed construct the
composition of the frame with the environment. These conditions are of purely syntactic
nature. Semantic constraints will be considered in Def. 9.

Definition 5 (Component Interface). A component interface C is a pair
C = ((Pi)i∈I , F ) such that (Pi)i∈I is a finitely indexed set of port contracts Pi = (Ai, Gi)
and F ∈ S is an interface specification, called component frame, such that the following
conditions are satisfied:

1. For all i, j ∈ I with i 6= j, `(Pi) ∩ `(Pj) = ∅,

2. `(F ) =
⋃
i∈I `(Pi),

3. (Ai)i∈I ∪ {F} is a composable set of interfaces.

Example 1. Fig. 2 shows the interface of a Broker component specified in terms of
MIOs. The broker is always able to receive standard messagesm? or confidential messages
cM? on its first port PB1 . A standard message is immediately delivered (output s!)
on the second port PB2 while a confidential message is only delivered after successful



authentication. For that purpose the broker sends an authentication request req! (on port
PB2 ) and is then ready to receive the authentication rcv? after which the message will
be sent with output s!. Since the interface only assumes that a message or a confidential
message may be sent by the environment to the first port (assumption AB1 ), it can only
guarantee that the message or an authentication request may be issued on the second port
(guarantee GB2 ). But if an authentication has been received with rcv?, GB2 guarantees
that the message will be sent with s!. Obviously the assumption and guarantee on the
first port PB1 are weakly modally compatible. Also the assumption and guarantee on on
PB2 are weakly modally compatible. In Sect. 6.1, Ex. 3 we will discuss how the Broker
component interface is constructed in a systematic way.

m?

s!

cM?

req!

rcv?
PB1 PB2

m?
cM?

GB1m!
cM!

AB1
m

cM

s!

req!

rcv?

s!

GB2
s?

req? rcv!

AB2req

s

rcv

FB

Figure 2: Interface of a Broker component

4.2. Composition of Component Interfaces

In this section we describe the composition of component interfaces merely based
on syntactic considerations. In particular, we do not require yet that guarantees of
one component port must satisfy the assumptions of the connected port of the other
component.5 Semantic requirements like this are studied in Sects. 4.4 and 4.5. The
composition of two component interfaces B and C is only possible if ports of B can be
connected to ports of C in a syntactically meaningful way. The simplest solution would
be to require that there is exactly one port of B which can be syntactically matched with
exactly one port of C. In that way we would, however, not be able to construct cyclic
architectures. Therefore we consider the case in which several binary port connections
can be established between two component interfaces. For a binary port connection
between two ports, say PB of B and PC of C, we assume that PB and PC have the
same set of labels and that the guarantee interfaces (assume interfaces resp.) of the
two ports are composable. Then B and C can be composed if there is a set of binary
connections between ports of the two components such that the non-connected ports of
B and C have pairwise disjoint labels and if the two component frames are composable.
The non-connected ports become the ports of the composition. Fig. 3 illustrates how the
composition works if there are two connected ports and two open ports. In order to stay
as abstract as possible, we do not introduce an explicit notion of connector here as in
architectural languages like Wright [1].

5Similarly to interface specifications which may be syntactically composable without being semanti-
cally compatible.
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Figure 3: Composition of component interfaces

Definition 6 (Component Interface Composition). Let B = ((PBi )i∈I , F
B) and

C = ((PCj )j∈J , F
C) be component interfaces. B and C are composable if there exist

non-empty subsets I0 ⊆ I, J0 ⊆ J and a bijective connector function κ : I0 → J0 such
that:

1. For all i ∈ I0, `(PBi ) = `(PCκ(i)) and for PBi = (ABi , G
B
i ), PCκ(i) = (ACκ(i), G

C
κ(i)),

GBi is composable with GCκ(i) and ABi is composable with ACκ(i),

2. `(FB) ∩ `(FC) =
⋃
i∈I0 `(P

B
i )(=

⋃
j∈J0 `(P

C
j )),

3. FB and FC are composable.

Then the composition of B and C is defined by

B � C = ((PBi )i∈(I\I0) ∪ (PCj )j∈(J\J0), F
B ⊗ FC).

According to condition 1. - 3. of the definition, the bijective connector function κ is
unique and therefore the notation � needs no qualification concerning κ.

Lemma 3. If B and C are composable component interfaces, then B�C is a well-defined
component interface.

Proof. We have to show that the conditions of Def. 5 are satisfied by B�C. The proof
is straightforward by simple set-theoretic reasoning using the properties (L1) - (L3) of
labeled interface theories.

1. Obviously, the first condition of Def. 5 is satisfied, since `(FB)∩`(FC) =
⋃
i∈I0 `(P

B
i )

=
⋃
j∈J0 `(P

C
j )) and therefore the labels of non-connected ports PBi , P

C
j are dis-

joint for all i ∈ I \ I0, j ∈ J \ J0. The labels of the (still open) ports of B (C resp.)
are anyway pairwise disjoint.

2. Also the second condition of Def. 5 is satisfied: `(FB ⊗ FC) =, by cond. (L1) for
labeled interface theories, (`(FB)∪ `(FC)) \ (`(FB)∩ `(FC)) = (by cond. 2 of the
definition) (`(FB)∪ `(FC)) \

⋃
i∈I0 `(P

B
i ) = (by cond. 2 for component interfaces)

(
⋃
i∈I `(P

B
i ) ∪

⋃
j∈J `(P

C
j )) \

⋃
i∈I0 `(P

B
i ) = (

⋃
i∈(I\I0) `(P

B
i ) ∪

⋃
j∈(J\J0) `(P

C
j )).



3. For the third condition of Def. 5 we have to show that (ABi )i∈(I\I0)∪(ACj )j∈(J\J0)∪
{FB ⊗ FC} is composable. Since the labels of these assumptions are pairwise dis-
joint, they are also pairwise composable by cond. (L2) for labeled interface theories.
It remains to show that FB ⊗ FC is composable with each of the assumptions.
W.l.o.g. consider some ABi with i ∈ (I \ I0). Since B is a component interface, ABi
is composable with FB . Since `(ABi ) ∩ `(FC) = ∅, ABi is composable with FB by
cond. (L2) for labeled interface theories. Then, by associativity of composition, ABi
is composable with FB ⊗ FC . �

Obviously, component composition � is commutative since the underlying composi-
tion operator ⊗ and the set-theoretic union of (non-connected) ports is commutative.

4.3. Refinement of Component Interfaces

Our definition of component interface refinement relies on refinement of ports, see
Def. 4. A component interface B′ refines another one B if, first, both have the same
number of ports such that each port of B is refined by the corresponding port of B′ and,
secondly, the frame of B is refined by the frame of B′ in accordance with the refinement
relation of the underlying interface theory. Hence component behaviors and guarantees
are specialized in the refinement while assumptions are relaxed.

Definition 7 (Component Interface Refinement). Let C = ((PCi )i∈I , F
C) and C ′ =

((PC
′

j )j∈J , F
C′

) be two component interfaces. C ′ refines C, written C ′ v C, if there ex-
ists a bijection ρ : I → J such that

1. PC
′

i v PCρ(i) for all i ∈ I, and

2. FC
′ ≤ FC .

Note that reflexivity and transitivity of v is inherited from the underlying refinement
relation ≤ for interfaces.

Theorem 4 (Compositionality of Component Interface Refinement). Let B,B′,
C and C ′ be component interfaces such that B and C are composable and B′ v B as
well as C ′ v C holds. Then B′ and C ′ are composable and B′ � C ′ v B � C.

Proof. We first show that B′ and C ′ are composable. For simplicity, we assume that the
bijections between the index sets used for composition and for refinements are identities.

1. Consider condition (1) of Def. 6. Let PBi = (ABi , G
B
i ) and PCi = (ACi , G

C
i ) be

connected ports of B and C and let PB
′

i = (AB
′

i , GB
′

i ) and PC
′

i = (AC
′

i , G
C′

i ) such

that PB
′

i v PBi and PC
′

i v PCi . By assumption PBi and PCi have the same labels

and their guarantees (assumptions resp.) are composable. Since PB
′

i v PBi and

PC
′

i v PCi also `(PB
′

i ) = `(PBi ) and `(PC
′

i ) = `(PCi ), hence `(PB
′

i ) = `(PC
′

i ).

Moreover, since GB
′

i ≤ GBi and GBi is composable with GCi , it follows by (I1)

(compositionality of refinement of interface theories), that GB
′

i is composable with

GCi . Since GC
′

i ≤ GCi we obtain, again by (I1), that GB
′

i is composable with GC
′

i .
Similarly for the assumptions.



2. For condition (2) of Def. 6 we have to show that `(FB
′
) ∩ `(FC′

) =
⋃
i∈I0 `(P

B′

i ).

This follows from `(FB) ∩ `(FC) =
⋃
i∈I0 `(P

B
i ) and pairwise port refinement,

taking into account that the labels of a frame are the disjoint union of the labels
of the ports.

3. Condition (3) of Def. 6, i.e. composability of FB
′

and FC
′
, follows from compos-

ability of FB and FC and from FB
′ ≤ FB and FC

′ ≤ FC and by compositional
refinement.

By compositional refinement we also obtain FB
′ ⊗ FC′ ≤ FB ⊗ FC , i.e. the second

condition of Def. 7 is satisfied. The first condition of Def. 7 follows from the pairwise
refinement relations between the ports of B and B′ (C and C ′ resp.) such that, in
particular, the open ports of the B�C are pairwise refined by the open ports of B′�C ′.

�

4.4. Compatible Component Interfaces

In order to obtain an interface theory for component interfaces with ports, we still
need to define a suitable compatibility predicate. We propose a very intuitive notion,
that is two component interfaces B and C are compatible if assumptions and guarantees
on connected ports match. This can be easily expressed by the refinement relation of
the underlying interface theory. Fig. 4 shows the condition for compatible component
interfaces in the case of a single port connection.

FBGB1AB1 GB2

AB2 ≤

≤
FCGC1

AC1

GC2 AC2

Figure 4: Compatibility of Component Interfaces

Definition 8. Let B = ((PBi )i∈I , F
B) and C = ((PCj )j∈J , F

C) be two component in-
terfaces. B and C are compatible, denoted by B �� C, if they are composable according
to a bijective connector function κ : I0 → J0 for non-empty subsets I0 ⊆ I and J0 ⊆ J ,
such that for all i ∈ I0,

GBi ≤ ACκ(i) and GCκ(i) ≤ A
B
i .

Theorem 5 (Preservation of Compatibility). Let B,B′, C and C ′ be component
interfaces such that B′ v B and C ′ v C. If B �� C, then also B′ �� C ′.

Proof. Composability of B′ and C ′ follows from composability of B and C and from
Thm. 4. For simplicity, we assume that the bijections between the index sets used for the
refinements are identities. To prove B′ �� C ′, we show that GB

′

i ≤ AC
′

κ(i) for all i ∈ I0.

The converse property GC
′

κ(i) ≤ A
B′

i is proved analogously.

Since B′ v B, we get GB
′

i ≤ GBi . Since B �� C, we have GBi ≤ ACκ(i). Since C ′ v C,

we have ACκ(i) ≤ A
C′

κ(i). Hence, by transitivity of refinement, GB
′

i ≤ AC
′

κ(i). �



As a consequence of Thms. 4 and 5 we get the following result.

Corollary 6. Let C be the class of all component interfaces with port contracts built over
an arbitrary labeled interface theory (S,⊗,≤,�,L, `). Then (C,�,v,��) is an interface
theory.

4.5. Reliable Component Interfaces

Up to know, we have not studied the relation between the frame of a component
and the guarantees at the ports of the component. Thus it could be possible that a
component interface C states a guarantee on a port, which is not really supported by the
component frame. In such a case the component interface would not be reliable on that
port. Indeed a user who wants to connect to a certain port is trusting the guarantee on
that port which should be established by the component frame. In general, we can still
relax this consideration, since we can assume that the component is put into a context
where the assumptions on all other ports are met. Consider a component interface C and
the port P1 = (A1, G1) of C. Then G1 shows the guarantee of C on port P1 whenever
the component is put in the environment A2 ⊗ . . . ⊗ An for the other ports. In other
words, the frame F , which specifies the dependencies between the ports, should produce
in the context of the environment A2 ⊗ . . .⊗ An a behavior that satisfies the guarantee
G1 on the first port. Formally, this can be expressed by requiring that A2⊗ . . .⊗An⊗F
is a refinement of G1.

Definition 9 (Reliable Component Interface). Let C = ((Pi)i∈I , F ) be a compo-
nent interface with port contracts Pi = (Ai, Gi) for all i ∈ I. C is reliable if

⊗(Ai)i∈I\{j} ⊗ F ≤ Gj for all j ∈ I.

Discussion. One may wonder why the assumption Aj is not also used for ensuring
the guarantee Gj on port Pj . Assume we would require ⊗(Ai)i∈I ⊗ F ≤ Gj . Then
⊗(Ai)i∈I ⊗ F is a closed system (with no visible labels) while Gj is supposed to be
open for the environment. This cannot work. Another possibility would be to require
⊗(Ai)i∈I ⊗ F ≤ (Gj ⊗ Aj). This would be an interesting approach. It follows the idea
that on each port Pj a component guarantees to cooperate, as indicated by Gj , with
any environment (connected to Pj) that satisfies Aj . But this would only make sense
if the cooperation between Aj and Gj can be observed which does not fit to the intu-
ition of interface composition making all communications internal. As a consequence
we would need significantly more ingredients for the underlying interface theories. An
attempt could be to use two different composition operators, ⊗ that hides communica-
tion and ⊗ which does not hide communication, and require for reliability the condition
(⊗(Ai)i∈I\{j}⊗F ) ⊗Aj ≤ (Gj⊗Aj). How this could work and which additional laws are
needed is an interesting topic for future research.

An important issue is, of course, to study to what extent reliability of component
interfaces is preserved by composition. We can show that this is indeed the case if the
reliable components to be composed are compatible and if the composition uses a single
connection between two ports; see Thm. 7 below. If there are more port connections used
for the composition, then the ports of each single component (used for the connections)
must be independent to achieve this result. Intuitively this means, that the frame allows



arbitrary interleaving between the behaviors of those ports. Formally we require that
under the assumptions of the other ports the frame is a refinement of the product of the
behaviors (i.e. guarantees) of the ports under consideration.

Definition 10. Let C = ((Pi)i∈I , F ) be a component interface with port contracts Pi =
(Ai, Gi) for all i ∈ I and let ∅ 6= I0 ⊆ I. The ports (Pi)i∈I0 are independent w.r.t. F , if

1. ⊗(Ai)i∈I\I0 ⊗ F ≤ ⊗(Gj)j∈I0 , and

2. ⊗(Gj)j∈I0 � ⊗(Aj)j∈I0 .

Of course, any single port is independent and it may be noticed that a set of ports is
independent if and only if it could be collapsed into a single port.

Theorem 7 (Preservation of reliability). Let B and C be two reliable and compos-
able component interfaces such that the connected ports on each side are independent
(which is trivially satisfied if only two ports are connected). Then B �� C implies that
B � C is reliable.

Proof. Let B = ((PBi )i∈I , F
B) and C = ((PCj )j∈J , F

C) be composable according to a
bijective connector function κ : I0 → J0 for non-empty subsets I0 ⊆ I and J0 ⊆ J .

W.l.o.g. let i′ ∈ I \ I0. We have to show that

⊗(ABi )i∈I\(I0∪{i′}) ⊗ F
B ⊗ FC ⊗ (⊗(ACj )j∈J\J0) ≤ GBi′ .

This is shown using the following refinement steps:

⊗ (ABi )i∈I\(I0∪{i′}) ⊗ F
B ⊗ FC ⊗ (⊗(ACj )j∈J\J0)

≤ ⊗(ABi )i∈I\(I0∪{i′}) ⊗ F
B ⊗ (⊗(GCj )j∈J0)

(by independence of (PCj )j∈J0 and compositional refinement)

≤ ⊗(ABi )i∈I\(I0∪{i′}) ⊗ F
B ⊗ (⊗(ABi )i∈I0)

(by B �� C, i.e. GCκ(i) ≤ A
B
i for all i ∈ I0, and compositional refinement)

= ⊗(ABi )i∈I\{i′} ⊗ FB ≤ GBi′ (by reliability of B)

�

The next important result implies that for compatible, reliable component interfaces
B and C which are connected via independent ports the composition of the frame FB

with environments for B is compatible with the composition of FC with environments
for C.

Theorem 8. Let B = ((PBi )i∈I , F
B) and C = ((PCi )j∈J , F

C) be reliable component
interfaces which are composable according to a bijective connector function κ : I0 → J0

for non-empty subsets I0 ⊆ I and J0 ⊆ J . Assume that the connected ports on each side
are independent. Then B �� C implies(

⊗(ABi )i∈(I\I0) ⊗ FB
)
�
(
FC ⊗ (⊗(ACj )j∈(J\J0))

)
.



Proof. From independence of the ports (PBi )i∈I0 we get

⊗ (ABi )i∈(I\I0) ⊗ FB ≤ ⊗(GBi )i∈I0 (1)

Moreover, independence of the ports (PCi )j∈J0 and compatibility of B and C implies

FC ⊗ (⊗(ACj )j∈(J\J0)) ≤ ⊗(GCj )j∈J0 ≤ ⊗(ABi )i∈I0 . (2)

By independence of ports (PBi )i∈I0 we have ⊗(GBi )i∈I0 � ⊗(ABi )i∈I0 . The claim
follows from transitivity of refinement and preservation of compatibility. �

Example 2. Fig. 5 shows two component interfaces B and C built with MIOs. First
we can observe, that both interfaces are reliable. For instance, considering the first
port of B, AB2 ⊗sy FB ≤∗m GB1 . Considering the first port of C the proof obligation is
AC ⊗sy AC2 ⊗sy FC ≤∗m GC1 . This and all other proof obligations can be easily discharged
since we deal with weak refinement.

The two interfaces B and C are composable and also compatible since trivially GBi ≤∗m
ACi and GCi ≤∗m ABi for i = 1, 2. Moreover, the two ports of B are independent, since
FB ≤∗m GB1 ⊗sy GB2 and (GB1 ⊗sy GB2 )�m

w (AB1 ⊗sy AB2 ).
Also the ports 1 and 2 of C are independent, since AC ⊗sy FC ≤∗m GC1 ⊗sy GC2 and

(GC1 ⊗sy GC2 )�m
w (AC1 ⊗sy AC2 ).

The composition of B and C is shown in Fig. 6. According to Thm. 7 it is reliable
which is indeed the case since, obviously, FB ⊗sy FC ≤∗m GC . By Thm. 8 we also know
that FB �m

w (AC ⊗sy FC) which can be easily checked. In this case it is important that
the compatibility relation is weak disregarding silent must-transitions.

Let us now discuss modifications ofB and C such that all transitions inGB1 , G
B
2 , A

C
1 , A

C
2

and in GC become must-transitions. The single component interfaces are still reliable.
But the ports of C are not independent anymore since FB 6≤∗m (GB1 ⊗sy GB2 ). The reason
is that FB supports only alternating outputs a! and b! while the product GB1 ⊗sy GB2
now requires that arbitrary interleaving of outputs must be possible. We can also see
that the composition of B and C is not reliable anymore, i.e. FB ⊗sy FC 6≤∗m GC , since
the new GC has only must-transitions.

5. Modal Component Interfaces

In Sect. 3 we have presented the modal labeled interface theory based on MIOs. In
Sect. 4 we have provided a generic approach to construct component interfaces with
port contracts. We will now apply this procedure to MIOs and obtain a theory of
modal component interfaces. It is given by the tuple (CMIO ,�sy,vm,��

∗
m) such that

CMIO denotes the class of modal interfaces with modal port contracts, �sy denotes their
synchronous composition, vm their refinement and ��

∗
m denotes compatibility of modal

component interfaces. According to Cor. 6, all requirements of an interface theory are
satisfied.

As an illustration we consider a simple message transmission system which consists
of two component interfaces: the Broker introduced in Ex. 1 receives messages from its
environment and delivers them to a Client. A standard message is immediately delivered
while a confidential message is only delivered after successful authentication of the client.
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Figure 5: Compatible Component Interfaces with Independent Ports
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Figure 6: Composition of B and C

The architecture of the system is shown in Fig. 7. The meaning of the input and output
actions is summarized in Table 1.

The details of the Broker and the Client component interfaces are shown in Fig. 8.
The Broker interface has already been explained in Ex. 1. It is reliable according to
Def. 9. The proof obligations are AB1 ⊗sy FB ≤∗m GB2 and AB2 ⊗sy FB ≤∗m GB1 . They
are detailed in Fig. 9. The weak modal refinement relations can be easily discharged,
for instance, with the MIO Workbench [9]. Indeed it is crucial here and in the whole
approach that we use weak versions of refinement and compatibility which allow us to
abstract from silent transitions.

Broker B Client C
m? receive a message
cM? receive a confidential message
s! deliver the message to the client s? receive the message
req! send out an authentication request req? receive an authentication request
rcv? receive the (valid) authentication information rcv! send the authentication information

Table 1: Meaning of the actions
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Figure 7: Architecture of the message transmission system

The interface of the Client component is much simpler. It has only one port such that
the guarantee of the port coincides with the frame which immediately implies reliability.
The behavior specifications are self-explanatory. Just note, that the assumption AC

requires that any answer rcv! of the client to an authentication request must be received
rcv? by the environment of the client; hence GC �m

w AC .
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Figure 8: Compatible component interfaces for Broker and Client
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Figure 9: Proof obligations for reliability of the Broker interface

Clearly, the two component interfaces are composable by connecting the ports PB2
and PC , which both have the same labels and composable guarantees and assumptions.
The two component interfaces are compatible, i.e. Broker ��

∗
m Client. The proof

obligations are GC ≤∗m AB2 (which is trivially valid) and GB2 ≤∗m AC which can be easily
discharged. Their composition yields the interface Broker �sy Client shown in Fig. 10.6

6The composed frame FB ⊗sy FC is in fact equivalent to the guarantee GB
1 and hence could be
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Figure 11: Component interface with two ports

Due to Thm. 7 the composed interface must be reliable (which is trivial in the example)
since the single interfaces are reliable and compatible.

6. Design and Adaptation of Component Interfaces

In this section, we discuss methodological guidelines for component interface design
and adaptation. They are implied by the structural and semantic assumptions on reliable
component interfaces, in particular by the fact that the guarantee on one port must be
satisfied by the frame when combined with the assumptions on the other ports.

6.1. Designing Reliable Component Interfaces.

Our objective is to design a reliable component interface with two ports as shown in
Fig. 11. We rely on a given component frame F and on a partition of the labels of F into
ports. We propose three methods for the design of the single guarantees and assumptions
on the ports.

Construction of assumptions. In the first case, we assume that after the frame speci-
fication F has been fixed we have provided guarantees G1 and G2 on each port. The
goal is to find appropriate assumptions A1 and A2. According to the conditions for port
contracts and reliability, we must find solutions for the following constraints:

(1) A1 � G1, A2 � G2, and
(2) A1 ⊗ F ≤ G2, A2 ⊗ F ≤ G1.

An interpretation of (2) is to find a “controller” A1 of F such that their composition
satisfies G2 and, similarly, to find a controller A2 of F to satisfy G1. Additionally, the
controllers must be compatible with the corresponding guarantees to satisfy (1).

minimized. Whether minimization of MIOs w.r.t. equivalence (see Sect. 3.2) is possible is an interesting
issue which is out of the scope of this paper.



Construction of port contract. In the second case, we assume that for the given frame
F we have provided a port contract (A1, G1) for the first port. Then, the goal is to find
an appropriate port contract (A2, G2) for the second port. Of course, the constraints (1)
and (2) are still valid, but this time we can directly compute G2 = A1 ⊗ F which gives
us the strongest guarantee to satisfy part one of constraint (2). It remains to design A2

in such a way that:

A2 � G2 and A2 ⊗ F ≤ G1.

We propose the following method to design A2: First we look for a most liberal
assumption, say A′2, which is compatible with G2, i.e. A′2 � G2. Then we check, whether
A′2 ⊗ F ≤ G1. If this is the case, we take A2 = A′2 and are done. Otherwise we must try
to find a stronger assumption A2 ≤ A′2 such that A2 ⊗ F ≤ G1 holds. If we succeed we
have for free A2 � G2, since compatibility is preserved by refinement.

Construction of guarantees. In the last case, we assume that we have given the frame
F and assumptions A1 and A2 on each port. The goal is to find appropriate guarantees
G1 and G2 satisfying the constraints (1) and (2). To satisfy (2) we can compute G1 =
A2 ⊗ F and G2 = A1 ⊗ F which are the strongest possible guarantees under the given
assumptions. To satisfy (1) the guarantees may still be weakened. But, in general, there
is no guarantee that the constraints are indeed solvable.

Example 3. We illustrate the second design method on the construction of the Broker
interface. Given the frame FB we have decided to guarantee on port PB1 that any
kind of messages (standard and confidential ones) must always be accepted; see GB1 .
We have put the most liberal assumption AB1 on the environment on that port; the
environment may always send messages (but does not need to send). Then we have
computed the product AB1 ⊗sy FB which is shown in Fig. 9(a). We then decided that
the guarantee on port PB2 should not show silent transitions which are usually not helpful
to the user of a component. Therefore, we have proposed the actual guarantee GB2 such
that AB1 ⊗sy FB ≤∗m GB2 . This intermediate weakening step slightly deviates from the
method discussed above.

Then we continued, following the steps of our second design method above, by finding
a most liberal assumption, call it A′B2 , such that A′B2 �

m
w GB2 . A′B2 is a variant of AB2

such that the transition with rcv! is a may-transition. Then we had to check A′B2 ⊗sy

FB ≤∗m GB1 , but this failed, since under the assumption of a may-transition for rcv! on
port PB2 the component could not guarantee to continue accepting messages on port PB1
as guaranteed by GB1 . Therefore we have strengthened the assumption A′B2 to the actual
assumption AB2 with a must-transition for rcv!. Finally we have AB2 ⊗sy FB ≤∗m GB1 (see
Fig. 9(b)) and AB2 �

m
w GB2 is guaranteed for free.

6.2. Adaptation of Component Interfaces.

We discuss a method to adapt component interfaces to changing environments. We
assume a reliable component interface B which has been put in a new environment C,
represented itself by a reliable component interface, such that both interfaces are not
compatible. Our initial situation is shown in Fig. 12. The component interfaces do
mutually not satisfy each others assumptions. Our goal is to overcome this problem by
adaptation.
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Figure 12: Adaptation of component interfaces: initial situation

We assume that we cannot change the environment C. Therefore, we must try to
adapt the component interface B such that B remains reliable and B and C become
compatible. The adaptation should be performed by adjusting assumptions and guaran-
tees but not changing the frame of B. Our adaptation procedure consist of the following
steps:

1. Replace AB2 by GC . Then the new assumption on the second port of B coincides
with the guarantee on the port of C.

2. Replace GB2 by AC . Then the new guarantee on the second port of B coincides
with the assumption on the port of C. This gives a correct port contract since we
know that GC and AC are compatible (on the C port). Also B and C are now
trivially compatible component interfaces, since assumptions and guarantees are
the same.

3. Compute GC ⊗FB (notice that, according to step 1, GC is the new assumption on
the second port) and replace GB1 by GC ⊗ FB . This means that GC ⊗ FB is the
new guarantee on the first port of B and therefore B is reliable on the first port
by construction.

4. Finally we have to find an assumption ĀB1 on the first port of B such that

(a) ĀB1 � GC ⊗ FB
(notice that GC ⊗ FB is the new guarantee on the first port of B), and

(b) ĀB1 ⊗ FB ≤ AC .

The last step is the most complicated one. It can be approached in the same way
as proposed in the last subsection for constructing a port contract: First, we construct
a most liberal assumption for the first port of B that is compatible with GC ⊗ FB .
Then, we check whether (b) is satisfied and, if not, we try to strengthen the assumption
accordingly. If we are successful the final situation after adaptation is shown in Fig. 13.

Example 4. We apply our adaptation methodology to the Broker and Client example.
Let us assume that the client has changed and does not support a treatment of authen-
tication anymore. This is modeled by the new Client interface in Fig. 14 showing the
initial situation of our adaptation problem.

Following the steps of our general procedure we achieve a solution shown in Fig. 15.
The adaptation has been computed automatically, except for the new assumption ĀB1
which has been easily designed by hand.
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Figure 13: Adaptation of component interfaces: final situation
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Figure 14: Broker interface with modified Client

7. Component Interfaces with I/O-Predicates

In this section we discuss another instantiation of our approach. The underlying
labeled interface theory uses I/O-predicates as interface specifications. I/O-predicates
follow the idea to specify programs as relations between input and output observations as
suggested in the Unifying Theories of Programming [26]. In the following input observa-
tions will be determined by input variables and output observations by output variables.

We assume a universal set Lp of (untyped) variables and a language that contains
predicates over variables closed under the usual Boolean connectives and constants and
under existential and universal quantification: If P is a predicate with free variables
FV (P ) and X ⊆ Lp then ∃X : P and ∀X : P are predicates as well with free variables
FV (P ) \X. If X = ∅ then ∃X : P stands for P and ∀X : P stands for true. An I/O-
predicate is a triple P (InP , OutP ) such that P is a predicate, InP ⊆ Lp and OutP ⊆ Lp

are sets of input and output variables respectively, such that InP ∩ OutP = ∅ and
FV (P ) ⊆ InP ∪ OutP . The set of I/O-predicates is denoted by Sp. It forms our
underlying set of interface specifications. The set of labels is given by Lp and the labeling
function `p : Sp → ℘fin(Lp) is defined by `p(P (InP , OutP )) = InP ∪ OutP for each
P (InP , OutP ) ∈ Sp.

Two I/O-predicates P (InP , OutP ) and Q(InQ, OutQ) are composable if their vari-
ables overlap at most on complementary types, i.e. InP ∩ InQ = ∅ and OutP ∩OutQ =
∅. We define the composition of two composable I/O-predicates P (InP , OutP ) and
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Figure 15: Adaptation of the Broker interface

Q(InQ, OutQ) by

P (InP , OutP ) ⊗p Q(InQ, OutQ) = (∃(OutP∩InQ)∪(InP∩OutQ) : P∧Q)(InPQ, OutPQ)

with InPQ = (InP ∪ InQ) \ `p(P ) ∩ `p(Q), OutPQ = (OutP ∪OutQ) \ `p(P ) ∩ `p(Q).
The composition operator is commutative and associative which follows from set-the-

ory and from the logical commutativity and associativity laws. Obviously, the compo-
sition operator satisfies also the labeling conditions (L1) and (L2) for labeled interface
theories in Def. 2. It can be considered as a generalization of the sequential composition
of predicates via the existence of intermediate observations like in [26]. For instance,
if OutP = InQ and OutQ ∩ InP = ∅ then our predicate composition expresses exactly
relational composition:

P (InP , OutP ) ⊗p Q(InQ, OutQ) = (∃InQ : P ∧Q)(InP , OutQ).

Fig. 16 shows an example for the most general situation of composition which involves
shared input/output variables {x, y} in both directions and inputs and outputs ({i, o}
and {j, r}) on both sides that remain open after composition. Of course the composition
of I/O-predicates can lead to inconsistent specifications, in particular if there are mutual
dependencies. A variant of our approach has been considered in [17] for the composi-
tion and (possibly mutually dependent) connection of “stateless input/output interfaces”
which are similar to I/O-predicates.

The refinement notion for I/O-predicates follows the idea of predicate refinement by
implication from the concrete to the abstract specification. We must, however, be careful
with inputs; the concrete specification should accept any inputs that belong to the domain
of the abstract specification. For this purpose we consider weakest preconditions. For an
I/O-predicate P (InP , OutP ) the weakest precondition is given by the predicate ∃OutP :
P . An I/O-predicate P ′(InP ′ , OutP ′) is a refinement of an I/O-predicate P (InP , OutP ),
denoted by P ′(InP ′ , OutP ′) ≤p P (InP , OutP ), if the following conditions are satisfied.

(r1) InP ′ = InP and OutP ′ = OutP ,

(r2) ∀InP : (∃OutP : P )⇒ (∃OutP : P ′),
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Figure 16: Composition of I/O-predicates

(r3) ∀InP ∪OutP : P ′ ⇒ P .

Obviously refinement of I/O-predicates is reflexive and transitive and satisfies the
labeling condition (L3) in Def. 2.

An interesting question is how compatibility should be defined for I/O-predicates.
The idea is that any possible output of one predicate should be accepted as input by the
other predicate as expressed by the conditions (c1.1) and (c2.1) below. In the special
case of sequential composition as discussed above this would be sufficient. However in
the context of mutual dependencies we need an additional condition which requires that
outputs fed back to the other component must be uniquely determined by the other
variables. This is expressed by the conditions (c1.2) and (c2.2) below.

Two I/O-predicates P (InP , OutP ) and Q(InQ, OutQ) are compatible, denoted by
P (InP , OutP )�p Q(InQ, OutQ), if they are composable and if the following conditions
are satisfied:

(c1) if OutP ∩ InQ 6= ∅, then
(c1.1) ∀`p(P ) : (P ⇒ ∃`p(Q) \OutP : Q), and
if additionally OutQ ∩ InP 6= ∅, then
(c1.2) ∀`p(P ) : (P ⇒ UniqueOut(Q,OutQ ∩ InP ))

(c2) if OutQ ∩ InP 6= ∅, then
(c2.1) ∀`p(Q) : (Q⇒ ∃`p(P ) \OutQ : P ), and
if additionally OutP ∩ InQ 6= ∅, then
(c2.2) ∀`p(Q) : (Q⇒ UniqueOut(P,OutP ∩ InQ)).

where UniqueOut(Q,OutQ ∩ InP ) =

∀(`p(Q) \OutP )[X ′′/X] : (Q[X ′′/X]⇒ X ′′ = X),

such that X = OutQ ∩ InP , X ′′ is the set of the double primed variables of X, [X ′′/X]
denotes the substitution of all variables in X by their double primed versions, and X ′′ =
X denotes the conjunction of all equations x′′ = x with x ∈ X. UniqueOut(P,OutP ∩
InQ) is defined analogously.

The compatibility relation is obviously symmetric. In some special cases the compat-
ibility conditions are much simpler. If two I/O-predicates have no shared variables, then
they are trivially compatible. If there are only shared variables in one direction, for in-
stance if OutP = InQ and OutQ∩ InP = ∅, then P (InP , OutP )�p Q(InQ, OutQ) holds



if just condition (c1.1) is satisfied, which in this case reads as ∀`p(P ) : (P ⇒ ∃OutQ : Q).
This case expresses compatibility for sequential composition of predicates requiring that
the outputs of P (InP , OutP ) belong to the input domain of Q(InQ, OutQ) given by the
weakest precondition of Q which is ∃OutQ : Q.

Example 5. We provide an example for compatible I/O-predicates with mutual depen-
dencies. Consider Fig. 16 and let P be y = x + 1 and Q be x = y − 1. Then condition
(c1.1) is: ∀i, x, y, o : (y = x+ 1⇒ ∃j, x, r : x = y − 1) which is trivially true.

Condition (c1.2) is: ∀i, x, y, o : (y = x + 1 ⇒ ∀j, x′′, r : (x′′ = y − 1 ⇒ x′′ = x))
which can be easily verified. Conditions (c2.1) and (c2.2) hold analogously. Hence the
two I/O-predicates are compatible.

Let us now change the predicate Q to x = y+1. Then (c1.1) remains valid but (c1.2)
becomes false. Hence the two I/O-predicates would not be compatible in this case.

To get a labeled interface theory of I/O-predicates it remains to show that the prop-
erties of compositional refinement and preservation of compatibility are satisfied.

Proposition 9. For all I/O-predicates S, S′, T, T ′ ∈ Sp the following holds:

1. Compositional Refinement: If S ⊗p T is defined, S′ ≤p S and T ′ ≤p T ,
then S′ ⊗p T ′ is defined and S′ ⊗p T ′ ≤p S ⊗p T .

2. Preservation of Compatibility: If S �p T , S′ ≤p S and T ′ ≤p T , then S′ �p T ′.

Proof. For better readability we perform the proof for two composable I/O-predi-
cates P (InP , OutP ) and Q(InQ, OutQ) as in Fig. 16 such that InP = {i, x}, OutP =
{y, o}, InQ = {j, y}, and OutQ = {x, r}. Let P ′(InP , OutP ) ≤p P (InP , OutP ) and
Q′(InQ, OutQ) ≤p Q(InQ, OutQ) be two refinements.

Proof of (1): We have to show

P ′(InP , OutP ) ⊗p Q′(InQ, OutQ) ≤p P (InP , OutP ) ⊗p Q(InQ, OutQ).

Condition (r1) is obviously satisfied. For (r2) we have to show

∀i, j : (∃o, r : ∃y, x : P ∧Q)⇒ (∃o, r : ∃y, x : P ′ ∧Q′).

We know from the assumptions that

∀i, x : (∃y, o : P )⇒ (∃y, o : P ′) and ∀j, y : (∃x, r : Q)⇒ (∃x, r : Q′).

This implies easily the claim (r2).
For condition (r3) we have to show

∀i, j, o, r : (∃y, x : P ′ ∧Q′)⇒ (∃y, x : P ∧Q).

We know from the assumptions that

∀i, x, y, o : P ′ ⇒ P and ∀j, y, x, r : Q′ ⇒ Q.

This implies easily the claim (r3).
Proof of (2): Assume P (InP , OutP ) �p Q(InQ, OutQ). We have to show

P ′(InP , OutP )�p Q′(InQ, OutQ). For the I/O-variables we knowOutP∩InQ = {y} 6= ∅
and OutQ ∩ InP = {x} 6= ∅. By symmetry, it is sufficient to show that condition (c1) is
satisfied, i.e. we have to prove:



(c1.1) ∀i, x, y, o : (P ′ ⇒ ∃j, x, r : Q′), and

(c1.2) ∀i, x, y, o : (P ′ ⇒ UniqueOut(Q′, {x}))

with UniqueOut(Q′, {x}) = ∀j, x′′, r : (Q[x′′/x]⇒ x′′ = x).
We perform the proof on the semantic level. First we prove (c1.1). Let i, x, y, o be ar-

bitrary elements such that P ′(i, x, y, o) holds. We have to show that for the given y, there
exist elements j, x′′, r such that Q′(j, y, x′′, r). Since P ′(InP , OutP ) ≤p P (InP , OutP ),
we get by (r3) that P (i, x, y, o) holds. From P (InP , OutP )�p Q(InQ, OutQ) it follows
that for the given y there exist elements j, x′′, r such that Q(j, y, x′′, r). Let j be such
an element. Hence for j, y (which is the input of Q) there exist outputs x′′, r of Q such
that Q(j, y, x′′, r). Then the refinement rule (r2) for Q′(InQ, OutQ) ≤p Q(InQ, OutQ)
implies that for j, y there exist outputs x′′, r of Q′ such that Q′(j, y, x′′, r). Hence there
exist elements j, x′′, r such that Q′(j, y, x′′, r).

Secondly, we prove (c1.2). Let i, x, y, o be arbitrary elements such that P ′(i, x, y, o)
holds. We have to show that for the given y and for all elements j, x′′, r, if Q′(j, y, x′′, r)
then x′′ = x. Let j, x′′, r be arbitrary elements with Q′(j, y, x′′, r). By refinement rule
(r3) for Q′(InQ, OutQ) ≤p Q(InQ, OutQ) we get Q(j, y, x′′, r). Moreover, by (r3) for
P ′(InP , OutP ) ≤p P (InP , OutP ) we get P (i, x, y, o). Then, from the assumed compati-
bility P (InP , OutP )�p Q(InQ, OutQ) it follows that x′′ = x. �

Theorem 10. The tuple (Sp,⊗p,≤p,�p,Lp, `p) is a labeled interface theory.

As a consequence of this theorem we can lift the theory of I/O-predicates to a theory
of component interfaces such that all general results developed in the last sections can
be applied.

Example 6. We consider the division of real numbers like in [17]. We have three vari-
ables x, y, z which are interpreted in R ∪ {⊥}. Division by zero yields ⊥. We specify a
component with the interface shown in Fig. 17.

z = x/y
x ∈ R ∧ y ∈ R \ {0}

GD1

x ∈ R ∧ y ∈ R \ {0}

AD1
x

y
z ∈ R

GD2

z ∈ R

AD2z

FD

Figure 17: Component interface for the division of real numbers

The frame FD has input variables x, y and the output variable z. The frame predicate
says that the component computes the division of x by y and delivers the result on z. The
component interface has two ports. The guarantee GD2 on the right port has the output
variable z, indicated on the outgoing arrow, and no input variable. It guarantees that
the component will deliver a proper real value (i.e. different from ⊥). The assumption
predicate AD2 on this port has the input variable z and requires that any environment
connected to that port must accept a proper real number as input. Obviously assumption
and guarantee are compatible. Hence, the pair (AD2 , G

D
2 ) forms a port contract. For the

construction of the port contract on the other side we apply the second design method



for component interfaces explained in Sect. 6.1. First we compute the guarantee GD1
by constructing the composition AD2 ⊗p FD which gives us literally the I/O-predicate
(∃z : z ∈ R∧z = x/y)({x, y}, ∅). This I/O-predicate is equivalent toGD1 which guarantees
that the component will accept as inputs on that port any proper real numbers x, y with
y 6= 0. Then we must design AD1 in such a way that

AD1 �
p GD1 and AD1 ⊗p FD ≤p GD2 .

For AD1 we take the most liberal I/O-predicate compatible with GD1 which has the
same underlying predicate as GD1 but inputs and outputs are reversed. AD1 requires that
the environment connected to that port can only deliver (as outputs) proper real values
x, y with y 6= 0. Finally we have to check that AD1 ⊗p FD ≤p GD2 . Since both I/O-
predicates have no input variables and the same output variable z it is enough to prove
the refinement condition (r3) which reads in this case

∀z : (∃x, y : x ∈ R ∧ y ∈ R \ {0} ∧ z = x/y)⇒ z ∈ R.

Obviously this is true.
One may wonder whether the above component interface specification doesn’t look

over-complicated. Indeed one could use syntactic sugar to express situations in which
assumptions and guarantees consist of the same predicate but with reversed input and
output variables. One could also implicitly assume that whenever a guarantee is given
on outputs, like in GD2 , then the environment is assumed to take that output as an input
and when an assumption is formulated on outputs of the environment, like in AD1 , then
the component guarantees to take that output as an input. This implicit assumption
is usually behind pre/postcondition style specifications who don’t explicitly state that a
precondition is not only a requirement for the user to provide the right data but also a
requirement for the implementor to accept that data, and similarly for postconditions.

8. Conclusion

We have presented a generic framework to construct a theory of component interfaces
with port contracts on top of any arbitrary labeled interface theory. A simple extension
of interface theories with labels was enough to develop the full theory of component inter-
faces. We have shown how the approach can be instantiated to obtain modal component
interfaces on the basis of modal I/O-transition systems. MIOs are particularly suited
for presenting port contracts since they allow to specify loose assumptions utilizing the
expressiveness of the modalities. We have also provided methodological guidelines how
to construct reliable component interfaces and we have discussed an adaptation scenario.

As a second instantiation of our approach we have considered I/O-predicates which
led to component interfaces in the style of pre/postcondition specifications. Of course it
is appealing to study more instantiations of our abstract component theory. In principle
it will work whenever a concrete framework satisfies the rules of a labeled interface theory.
For instance, this would be the case for transition systems with buffered communication
and with weak asynchronous compatibility considered in [6], for modal I/O-automata
with data constraints ([8, 4]), which combine pre/postconditions on data states with the
specification of dynamic behavior, and for modal Petri nets, in which compatibility is
expressed by a consumption requirement for the channels of asynchronously composed
nets [24]. Another candidate for instantiation would be CSP processes with failures (or



failures-divergence) refinement [41] if we define compatibility of processes by deadlock
freedom of their parallel composition. Since failures refinement preserves deadlock free-
dom and is also compositional this would form an appropriate basis for our approach. A
candidate from coordination languages are REO connectors [34] equipped with a seman-
tics in terms of UTP designs [26]. Another example could be contract-based components
in the sense of [33] with provided and required interfaces for offered and used methods.
In this case one could consider predicates on object-oriented state models as a basic in-
terface theory and one could attach to a component one port for each method such that
the precondition is the assumption and the postcondition is the guarantee on that port.

For our modal component interface theory we plan to provide tool support by ex-
tending the MIO Workbench [9]. This tool is already very useful to check weak modal
refinement and weak modal compatibility but it lacks explicit support for the structure of
component interfaces with contracts on ports. Another issue concerns a next refinement
stage of our approach by introducing a more detailed, but still generic framework that
integrates architectural concepts like connectors, assemblies and hierarchies and then
to study the applicability to well established architectural design languages like, e.g.,
Wright [1]. This would be particularly interesting since Wright emphasizes also the role
of communication compatibility which there is achieved by relating component ports and
connector roles (whose behavior is specified in terms of CSP) by failures-divergence re-
finement. This idea is close to our compatibility relation between component interfaces
which relates port guarantees of one component with the assumptions of the other by
refinement (which could be instantiated with failures-divergence refinement as discussed
above).

Acknowledgment. We would like to thank the reviewers of previous versions of this work
for valuable comments and suggestions.
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[27] Hans Hüttel and Kim Guldstrand Larsen. The Use of Static Constructs in A Modal Process Logic.

In Logic at Botik 1989, pages 163–180, 1989.
[28] Cliff B. Jones. Development methods for computer programs including a notion of interference.

PhD thesis, Oxford University Computing Laboratory, 1981.
[29] Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Assume-guarantee ver-

ification for probabilistic systems. In TACAS, volume 6015 of Lecture Notes in Computer Science,
pages 23–37. Springer, 2010.

[30] Leslie Lamport. win and sin: Predicate transformers for concurrency. ACM Trans. Program. Lang.
Syst., 12(3):396–428, 1990.

[31] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O Automata for Interface
and Product Line Theories. In ESOP 2007, volume 4421 of Lect. Notes Comp. Sci., pages 64–79.



Springer, 2007.
[32] Kim Guldstrand Larsen and Bent Thomsen. A Modal Process Logic. In 3rd Annual Symp. Logic

in Computer Science, LICS 1988, pages 203–210. IEEE Computer Society, 1988.
[33] Zhiming Liu, Jifeng He, and Xiaoshan Li. Contract oriented development of component software.
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