
Channel Properties of
Asynchronously Composed Petri Nets?

Serge Haddad1, Rolf Hennicker2, and Mikael H. Møller3

1 LSV, ENS Cachan & CNRS & INRIA, France
2 Ludwig-Maximilians-Universität München, Germany

3 Aalborg University, Denmark

Abstract. We consider asynchronously composed I/O-Petri nets
(AIOPNs) with built-in communication channels. They are equipped
with a compositional semantics in terms of asynchronous I/O-transition
systems (AIOTSs) admitting infinite state spaces. We study various
channel properties that deal with the production and consumption of
messages exchanged via the communication channels and establish use-
ful relationships between them. In order to support incremental design
we show that the channel properties considered in this work are preserved
by asynchronous composition, i.e. they are compositional. As a crucial
result we prove that the channel properties are decidable for AIOPNs.

1 Introduction

(A)synchronous composition. The design of hardware and software systems
is often component-based which has well-known advantages: management of
complexity, reusability, separation of concerns, collaborative design, etc. One
critical feature of such systems is the protocol supporting the communication
between components and, in particular, the way they synchronise. Synchronous
composition ensures that both parts are aware that communication has taken
place and then simplifies the validation of the system. However in a large scale
distributed environment synchronous composition may lead to redhibitory ineffi-
ciency during execution and thus asynchronous composition should be adopted.
The FIFO requirement of communication channels is often not appropriate in
this context. This is illustrated by the concept of a software bus where appli-
cations push and pop messages in mailboxes. Also on the modelling level FIFO
ordering is often not assumed, like for the composition of UML state machines
which relies on event pools without specific requirements.
Compositions of Petri nets. In the context of Petri nets, composition has
been studied both from theoretical and practical points of view. The process
algebra approach has been investigated by several works leading to the Petri
net algebra [4]. Such an approach is closely related to synchronous composition.
In [22] and [23] asynchronous composition of nets are performed via a set of
places or, more generally, via a subnet modelling some medium. Then structural

? This work has been partially sponsored by the EU project ASCENS, 257414.

restrictions on the subnets are proposed in order to preserve global properties like
liveness or deadlock-freeness. In [21] a general composition operator is proposed
and its associativity is established. A closely related concept to composition is
the one of open Petri nets which has been used in different contexts like the
analysis of web services [25]. Numerous compositional approaches have been
proposed for the modelling of complex applications but most of them are based
on high-level Petri nets; see [11] for a detailed survey.

Channel properties. With the development of component-based applications,
one is interested in verifying behavioural properties of the communication and,
in the asynchronous case, in verifying the properties related to communication
channels. Channel properties naturally occur when reasonning about distributed
mechanisms, algorithms and applications (e.g. management of sockets in UNIX,
maintaining unicity of a token in a ring based algorithm, recovery points with
empty channels for fault management, guarantee of email reading, etc.).

Our contributions. In this work we are interested in general channel proper-
ties and not in specific system properties related to particular applications. The
FIFO requirement for channels potentially can decrease the performance of large
scale distributed systems. Thus we restrict ourselves to unordered channels which
can be naturally modelled by places of Petri nets. We propose asynchronously
composed Petri nets (AIOPNs) by (1) explicitely representing channels for inter-
nal communication inside the net and (2) defining communication capabilities
to the outside in terms of (open) input and output labels with appropriate tran-
sitions. Then we define an asynchronous composition operator which introduces
new channels for the communication between the composed nets. AIOPNs are
equipped with a semantics in terms of asynchronously composed I/O- transition
systems (AIOTS). We show that this semantics is fully compositional, i.e. it
commutes with asynchronous composition.

In our study two kinds of channel properties are considered which are re-
lated to consumption requirements and to the termination of communication.
Consumption properties deal with requirements that messages sent to a com-
munication channel should also be consumed. They can be classified w.r.t. two
criteria. The first criterion is the nature of the requirement: consuming mes-
sages, decreasing the number of messages on a channel, and emptying channels.
The second criterion expresses the way the requirement is achieved: possibly
immediately, possibly after some delay, or necessarily in each weakly fair run.
Communication termination deals with (immediate or delayed) closing of com-
munication channels when the receiver is not ready to consume any more. We
establish useful relations between the channel properties and prove that all chan-
nel properties considered here are compositional, i.e. preserved by asynchronous
composition, which is an important prerequisite for incremental design.

From a verification point of view, we study the decidability of properties in
the framework of AIOPN. Thanks to several complementary works on decidabil-
ity for Petri net problems, we show that all channel properties considered in this
work are decidable, though with a high computational complexity.

2

Related work. To the best of our knowledge, no work has considered channels
explicitely defined for communication inside composite components. However
there have been several works where channels are associated with asynchronous
composition. They can be roughly classified depending whether their main fea-
ture is an algorithmic or a semantic one.

From an algorithmic point of view, in the seminal work of [5], the authors
discus several properties like channel boundedness and specified receptions and
propose methods to analyse them. In [7], a two-component based system is stud-
ied using a particular (decidable) channel property, the half-duplex property : at
any time at most one channel is not empty.

From a semantic point view, in [13] “connection-safe” component assemblies
have been studied incorporating both synchronous and asynchronous communi-
cation. More recently in [2] synchronisability, a property of asynchronous sys-
tems, is introduced such that when it holds the system can be safely abstracted
by a synchronous one. In the framework of Petri nets, E. Kindler has defined
Petri net components where the interface is composed by places and composition
consists in merging places with same identities [16]. He proposed a partial order
semantics for such components and proved that the semantic is fully compo-
sitional. Furthermore, for a restricted linear temporal logic he established that
properties of this logic are preserved by composition; however such a logic cannot
express some of the channel properties we introduce here due to their branching
kind.

The Petri net based formalism of open nets is the closest formalism to ours.
Several works [17],[25], and [24] address both the semantic point of view and the
algorithmic one but only when the nets are assumed to be bounded which is not
required here. We postpone to Section 2.2 a more detailed comparison with our
formalism.
Organisation. In Section 2, we introduce AIOPNs and their asynchronous com-
position. Then, we provide a compositional semantic for AIOPNs in Section 3
in terms of AIOTSs. In Section 4, we define the channel properties and study
their relationships and their preservation under asynchronous composition. In
Section 5, we establish that all channel properties are decidable for AIOPNs.
Finally, in Section 6, we conclude and give some perspectives for future work.

2 Asynchronous I/O-Petri Nets

2.1 Basic Notions

We recall some basic notions of labelled Petri nets and define their transition
system semantics. A labelled Petri net is a tuple N = (P, T,Σ,W−,W+, λ,m0),
such that

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
– Σ is a finite alphabet,

3

– W− (resp. W+) is a matrix indexed by P × T with values in N;
it is called the backward (resp. forward) incidence matrix,

– λ : T → Σ is a transition labelling function, and
– m0 is a vector indexed by P and called the initial marking.

The labelling function λ is extended as usual to sequences of transitions. The
input (output resp.) vector W−(t) (W+(t) resp.) of a transition t is the column
vector of matrix W− (W+ resp.) with index t. Given two vectors −→v and −→v ′, one
writes −→v ≥ −→v ′ if −→v is componentwise greater or equal than −→v ′. A marking is
a vector indexed by P . A transition t ∈ T is firable from a marking m, denoted

by m
t−→, if m ≥ W−(t). The firing of t from m leads to the marking m′,

denoted by m
t−→ m′, and defined by m′ = m−W−(t) +W+(t). If λ(t) = a we

write m
a−→ m′. The firing of a transition is extended as usual to firing sequences

m
σ−→ m′ with σ ∈ T ∗. A marking m is reachable if there exists a firing sequence

σ ∈ T ∗ such that m0 σ−→ m.
Our approach is based on a state transition system semantics for Petri nets.

A labelled transition system (LTS) is a tuple S = (Σ,Q, q0,−→), such that

– Σ is a finite set of labels,
– Q is a (possibly infinite) set of states,
– q0 ∈ Q is the initial state, and
– −→ ⊆ Q×Σ ×Q is a labelled transition relation.

We will write q
a−→ q′ for (q, a, q′) ∈ −→, and we write q

a−→ if there exists

q′ ∈ Q such that q
a−→ q′. Let q1 ∈ Q. A trace of S starting in q1 is a finite or

infinite sequence ρ = q1
a1−→ q2

a2−→ q3
a3−→ · · · . For a ∈ Σ we write a ∈ ρ, if

there exists ai in the sequence ρ such that ai = a, and]ρ(a) denotes the (possibly
infinite) number of occurrences of a in ρ. For q ∈ Q we write q ∈ ρ, if there exists
qi in the sequence ρ such that qi = q. For σ = a1a2 · · · an ∈ Σ∗ and q, q′ ∈ Q we
write q

σ−→ q′ if there exists a (finite) trace q
a1−→ q2

a2−→ · · · an−→ q′. Often we
need to reason about the successor states reachable from a given state q ∈ Q with
a subset of labels Σ̄ ⊆ Σ. We define Post(q, Σ̄) = {q′ ∈ Q | ∃a ∈ Σ̄ . q

a−→ q′}
and we write Post(q) for Post(q,Σ). Further we define Post∗(q, Σ̄) = {q′ ∈ Q |
∃σ ∈ Σ̄∗ . q σ−→ q′} and we write Post∗(q) for Post∗(q,Σ).

The semantics of a labelled Petri net N = (P, T,Σ,W−,W+, λ,m0) is given
by its associated labelled transition system lts(N) = (Σ,Q, q0,−→) which rep-
resents the reachability graph of the net and is defined by

– Q ⊆ NP is the set of reachable markings of N ,
– −→ = {(m, a,m′) | a ∈ Σ and m

a−→ m′}, and
– q0 = m0.

2.2 Asynchronous I/O-Petri Nets and Their Composition

In this paper we consider systems which may be open for communication with
other systems and may be composed to larger systems. Both the behaviour of

4

primitive components and of larger systems obtained by composition can be
described by asynchronous I/O-Petri nets introduced in the following. We as-
sume that communication is asynchronous and takes place via unbounded and
unordered channels such that for each message type to be exchanged within a
system there is exactly one communication channel. The open actions are mod-
elled by distinguished input and output labels while communication inside the
system via the channels is modelled by communication labels. Given a finite set
C of channels, an I/O-alphabet over C is the disjoint union Σ = in] out] com
of pairwise disjoint sets in of input labels, out of output labels and com of com-
munication labels, such that Σ ∩ C = ∅, com = {Ba, aB | a ∈ C} and in and
out do not contain labels of the form Bx or xB. For each channel a ∈ C, the
communication label Ba represents consumption of a message from the channel
a and aB represents putting a message on a . Each channel is modelled as a
place and the transitions for communication actions are modelled by putting or
removing tokens from the channel places. Three examples of AIOPNs are shown
in Fig. 1. The nets N1 and N2 model primitive components (without channels)
which repeatedly input and output messages. The net N3 in Fig. 1c models a
simple producer/consumer system with one channel msg obtained by compo-
sition of the two primitive components; see below. Here and in the following
drawings input labels are indicated by “?” and output labels by “!”.

Definition 1 (Asynchronous I/O-Petri net). An asynchronous I/O-Petri
net (AIOPN) is a tuple N = (C,P, T,Σ,W−,W+, λ,m0), such that

– (P, T,Σ,W−,W+, λ,m0) is a labelled Petri net,
– C is a finite set of channels,
– C ⊆ P , i.e. each channel is a place,
– Σ = in] out] com is an I/O-alphabet over C,
– for all a ∈ C and t ∈ T ,

W−(a, t) =

{
1 if λ(t) = Ba,

0 otherwise
W+(a, t) =

{
1 if λ(t) = aB,

0 otherwise

– for all a ∈ C, m0(a) = 0. ♦

p0

msg!

p1

in?

(a) N1.

p2

msg?

p3

out!

(b) N2.

p0

msgB

p1

in?

p2

Bmsg

p3

out!

msg

(c) N3.

Fig. 1: Asynchronous I/O-Petri nets.

5

Two I/O-alphabets are composable if there are no name conflicts between
labels and channels and, following [1], if shared labels are either input labels of
one alphabet and output labels of the other or conversely. For the composition
each shared label a gives rise to a new communication channel, also called a,
and hence to new communication labels aB for putting and Ba for removing
messages. The input and output labels of the alphabet composition are the non-
shared input and output labels of the underlying alphabets.

Definition 2 (Alphabet composition). Let ΣS = inS] outS] comS and
ΣT = inT] outT] comT be two I/O-alphabets over channels CS and CT resp.
ΣS and ΣT are composable if (ΣS ∪ ΣT) ∩ (CS ∪ CT) = ∅ and ΣS ∩ ΣT =
(inS ∩ outT) ∪ (inT ∩ outS).The composition of ΣS and ΣT is the I/O-alphabet
Σ = in] out] com over the composed set of channels C = CS]CT]CST , with
new channels CST = ΣS ∩ΣT , such that

– in = (inS \ outT)] (inT \ outS),
– out = (outS \ inT)] (outT \ inS), and
– com = {aB, Ba | a ∈ C}4 ♦

Two AIOPNs can be (asynchronously) composed, if their underlying I/O-
alphabets are composable. The composition is constructed by taking the disjoint
union of the underlying nets and adding a new channel place for each shared
label. Every transition with shared output label a becomes a transition with
the communication label aB that produces a token on the (new) channel place
a and, similarly, any transition with shared input label a becomes a transition
with the communication label Ba that consumes a token from the (new) channel
place a. For instance, the AIOPN N3 in Fig. 1c is the result of the asynchronous
composition of the two AIOPNs N1 and N2 in Fig. 1a and Fig. 1b resp. The
newly introduced channel place is the place msg.

Our approach looks very similar to open Petri nets, see e.g. [17], which use in-
terface places for communication. But there are two important differences: First,
we explicitely distinguish channel places thus being able to reason on the com-
munication behaviour between composed components; see Sect. 4. The second
difference is quite important from the software engineer’s point of view. We do
not use interface places to indicate communication abilities of a component but
we use distinguished input and output labels instead. We believe that this has an
important advantage to achieve separation of concerns: The designer of a compo-
nent has not to take care whether the component will be used in a synchronous
or in an asynchronous environment later on; this should be the decision of the
system architect. Indeed open Petri nets already rely on asynchronous composi-
tion while our formalism would also support synchronous composition, see [19],
and mixed architectures. Since synchronous composition relies on matching of
transitions rather than communication channels we have not elaborated this case

4 Σ = in]out]com is indeed a disjoint union, since for all a ∈ CST the communication
labels aB, Ba are new names due to the general assumption that input and output
labels are not of the form xB, Bx.

6

here. The difference between AIOPNs and modal I/O-Petri nets introduced in [8]
is that AIOPNs comprise distinguished channel places but they do not support
modalities for refinement (yet).

Definition 3 (Asynchronous composition of AIOPNs). Let N = (CN ,
PN , TN , ΣN ,W

−
N ,W

+
N , λN ,m

0
N) and M = (CM, PM, TM, ΣM,W

−
M,W

+
M, λM,

m0
M) be two AIOPNs. N andM are composable if ΣN and ΣM are composable

and if PN ∩ PM = ∅, (PN ∪ PM) ∩ (ΣN ∩ ΣM) = ∅, and TN ∩ TM = ∅. In
this case their asynchronous composition is the AIOPN N ⊗pnM = (C,P, T,
Σ,W−,W+, λ,m0) defined as follows:

– C = CN] CM] CNM, with CNM = ΣN ∩ΣM,
– P = PN] PM] CNM,
– T = TN] TM,
– Σ is the alphabet composition of ΣS and ΣT ,
– W− (resp. W+) is the backward (forward) incidence matrix defined by:

for all p ∈ PN ∪ PM and t ∈ T for all a ∈ CNM and t ∈ T

W−(p, t) =

W−N (p, t) if p ∈ PN , t ∈ TN
W−M(p, t) if p ∈ PM, t ∈ TM
0 otherwise

W−(a, t) =

{
1 if λ(t) = Ba
0 otherwise

W+(p, t) =

W+
N (p, t) if p ∈ PN , t ∈ TN

W+
M(p, t) if p ∈ PM, t ∈ TM

0 otherwise
W+(a, t) =

{
1 if λ(t) = aB

0 otherwise

– λ : T → Σ is defined, for all t ∈ T , by

λ(t) =

λN (t) if t ∈ TN , λN (t) /∈ ΣN ∩ΣM
λM(t) if t ∈ TM, λM(t) /∈ ΣN ∩ΣM
BλN (t) if t ∈ TN , λN (t) ∈ inN ∩ outM
BλM(t) if t ∈ TM, λM(t) ∈ inM ∩ outN
λN (t)B if t ∈ TN , λN (t) ∈ inM ∩ outN
λM(t)B if t ∈ TM, λM(t) ∈ inN ∩ outM

– m0 is defined, for all p ∈ P , such that m0(p) = m0
N (p) if p ∈ PN ,

m0(p) = m0
M(p) if p ∈ PM, and m0(p) = 0 otherwise. ♦

3 Compositional Semantics

We extend the transition system semantics of labelled Petri nets defined in
Sect. 2.1 to AIOPNs. For this purpose we introduce asynchronous I/O-transition
systems which are labelled transition systems extended by channels and a chan-
nel valuation function val : Q −→ NC . The channel valuation function deter-
mines for each state q ∈ Q how many messages are actually pending on each
channel a ∈ C. For q ∈ Q and a ∈ C we use the notation val(q)[a++] to denote
the updated map

7

val(q)[a++](x) =

{
val(q)(a) + 1 if x = a,

val(q)(x) otherwise.

The updated map val(q)[a−−] is defined similarly. Instead of val(q)(a) we
will often write val(q, a).

Definition 4 (Asynchronous I/O-transition system). An asynchronous
I/O-transition system (AIOTS) is a tuple S = (C,Σ,Q, q0,−→, val), such that

– (Σ,Q, q0,−→) is a labelled transition system,
– C is a finite set of channels,
– Σ = in] out] com is an I/O-alphabet over C,
– val : Q −→ NC is a function, such that for all a ∈ C, q, q′ ∈ Q:

• val(q0, a) = 0,

• q aB−→ q′ =⇒ val(q′) = val(q)[a++],

• q
Ba−→ q′ =⇒ val(q, a) > 0 and val(q′) = val(q)[a−−], and

• for all x ∈ (in ∪ out), q
x−→ q′ =⇒ val(q′) = val(q). ♦

The first condition for val assumes that initially all communication channels
are empty. The second condition states that transitions with labels aB and Ba
have the desired effect of putting one message on a channel (consuming one
message from a channel resp.). The last condition requires that the input and
output actions of an open system do not change the valuation of any channel.
Sometimes we need to reason about the number of messages on a subset B ⊆ C
of the channels in a state q ∈ Q. We define val(q,B) =

∑
a∈B val(q, a).

The semantics of an asynchronous I/O-Petri net N is given by its associated
asynchronous I/O-transition system aiots(N). It is based on the transition sys-
tem semantics of a labelled Petri net (see Sect. 2.1) such that markings become
states, but additionally we define the valuation of a channel in a current state
m by the number of tokens on the channel under the marking m.

Definition 5 (Associated asynchronous I/O-transition system).
Let N = (C,P, T,Σ,W−,W+, λ,m0) be an AIOPN. The AIOTS associated
with N is given by aiots(N) = (C,Σ,Q, q0,−→, val), such that

– (Σ,Q, q0,−→) = lts(P, T,Σ,W−,W+, λ,m0),
– for all a ∈ C and m ∈ Q, val(m, a) = m(a). ♦

Example 6. The transition systems associated with the AIOPNs N1 and N2 in
Fig. 1a and 1b have two reachable states and the transitions between them
correspond directly to their Petri net representations. The situation is different
for the AIOPN N3 in Fig. 1c. It has infinitly many reachable markings and
hence its associated AIOTS has infinitely many reachable states. Fig. 2 shows
an excerpt of it. The states indicate the number of tokens in each place in the
order p0, p1,msg, p2, p3. The initial state is underlined.

8

01010 10010 01110 10110 01210 10210 01310

01001 10001 01101 10101 01201 10201 01301

in? msgB in? msgB in? msgB

in? msgB in? msgB in? msgB

out! out! out! out! out! out! out!

Bmsg Bmsg Bmsg Bmsg Bmsg

Fig. 2: Part of the associated AIOTS for N3 in Fig. 1c.

Like AIOPNs also two AIOTSs can be asynchronously composed, if their
underlying I/O-alphabets are composable. The composition is constructed by
introducing a new communication channel for each shared input/output action
and by appropriate transitions for the corresponding communication actions that
modify the valuation of the new channels (see items 3 and 4 in Def. 7). Since
the states of the composition must record the number of messages on the new
channels CST , the state space of the composition adds to the Cartesian product
of the underlying state spaces the set NCST of valuations of the new channels.
For a valuation v : CST 7→ N and channel a ∈ CST we use the notation v[a++]
(v[a−−] resp.) to denote the updated map which increments (decrements) the
value of a by 1 and leaves the values of all other channels unchanged.

Definition 7 (Asynchronous composition of AIOTS).
Let S = (CS , ΣS , QS , q

0
S ,−→S , valS) and T = (CT , ΣT , QT , q

0
T ,−→T , valT) be

two AIOTSs. S and T are composable if ΣS and ΣT are composable. In this
case their asynchronous composition is the AIOTS S ⊗ T = (C,Σ,Q, q0,−→,
val) defined as follows:

– C = CS] CT] CST , with CST = ΣS ∩ΣT ,
– Σ is the alphabet composition of ΣS and ΣT ,
– Q ⊆ QS ×QT × NCST ,
– q0 = (q0

S , q
0
T ,0) ∈ Q, with 0 being the zero-map,

– Q and −→ are inductively defined as follows whenever (qS , qT ,v) ∈ Q:

1: For all a ∈ (ΣS \ CST), if qS
a−→S q′S then (qS , qT ,v)

a−→ (q′S , qT ,v)
and (q′S , qT ,v) ∈ Q.

2: For all a ∈ (ΣT \ CST), if qT
a−→T q′T then (qS , qT ,v)

a−→ (qS , q
′
T ,v)

and (qS , q
′
T ,v) ∈ Q.

3: For all a ∈ inS ∩ outT ,

3.1: if qS
a−→S q′S and v(a) > 0 then (qS , qT ,v)

Ba−→ (q′S , qT ,v[a−−])
and (q′S , qT ,v[a−−]) ∈ Q,

3.2: if qT
a−→T q′T then (qS , qT ,v)

aB−→ (qS , q
′
T ,v[a++])

and (qS , q
′
T ,v[a++]) ∈ Q.

4: For all a ∈ inT ∩ outS ,

9

4.1: if qS
a−→S q′S then (qS , qT ,v)

aB−→ (q′S , qT ,v[a++])
and (q′S , qT ,v[a++]) ∈ Q,

4.2: if qT
a−→T q′T and v(a) > 0 then (qS , qT ,v)

Ba−→ (qS , q
′
T ,v[a−−])

and (qS , q
′
T ,v[a−−]) ∈ Q.

– For all (qS , qT ,v) ∈ Q and a ∈ C,

val((qS , qT ,v), a) =

valS(qS , a) if a ∈ CS
valT (qT , a) if a ∈ CT
v(a) if a ∈ CST

For the rules (1),(3.1) and (4.1), we say that the resulting transition in the
composition is triggered by S. Let ρ be a trace of S ⊗ T starting from a state
q = (qS , qT ,v) ∈ Q. The projection of ρ to S, denoted by ρ|S , is the sequence of
transitions of S, starting from qS , which have triggered corresponding transitions
in ρ. ♦

The following theorem shows that the transition system semantics of asyn-
chronous I/O-Petri nets is compositional. The proof is given in [12].

Theorem 8. Let N and M be two composable AIOPNs. Then it holds that
aiots(N ⊗pnM) = aiots(N)⊗ aiots(M) (up to bijection between state spaces).

4 Channel Properties and Their Compositionality

In this section we consider various properties concerning the asynchronous com-
munication via channels. We give a classification of the properties, show their
relationships and prove that they are compositional w.r.t. asynchronous compo-
sition, a prerequisite for incremental design.

4.1 Channel Properties

We consider two classes of channel properties. The first class deals with the
requirements that messages sent to a communication channel should also be
consumed; the second class concerns the termination of communication in the
sense that if consumption from a channel has been stopped then also production
on this channel will stop. The channel properties will be defined by considering
the semantics of AIOPNs, i.e. they will be formulated for AIOTSs.

Some of the properties, precisely the “necessarily properties” of type (c) in
Def. 10 below, rely on the consideration of system runs. In principle a system
run is a maximal execution trace; it can be infinite but also finite if no further
actions are enabled. It is important to remember, that we deal with open systems
whose possible behaviours are also determined by the environment. Hence, the
definition of a system run must take into account the possibility that the system
may stop in a state where the environment does not serve any offered input of the
system while at the same time the system has no enabled autonomous action, i.e.

10

an action which is not an input from the environment. Such states will be called
pure input states. They correspond to markings that “stop except for inputs”
in [24]. Note that all possible communication actions inside the system can be
autonomously executed. The same holds for output actions to the environment,
since we are working with asynchronous communication such that messages can
always be sent, even if they are never accepted by the environment. Formally,
system runs are defined as follows.

Let S = (C,Σ,Q, q0,−→, val) be an AIOTS with Σ = in] out] com.
A state q ∈ Q is called a pure input state if Post(q,Σ \ in) = ∅, i.e. only inputs
are enabled. A pure input state is a potential deadlock, as the environment of S
might not serve any inputs for S. Let q1 ∈ Q. A run of S starting in q1 is a trace
of S starting in q1, that is either infinite or finite such that its last state is a pure
input state. We denote the set of all runs of S starting from q1 as runS(q1).

In the following we also assume that system runs are only executed in a run-
time infrastructure which follows a weakly fair scheduling policy. In our context
this means that any autonomous action a, that is always enabled from a certain
state on, will infinitely often be executed. Formally, a run ρ ∈ runS(q1) with

q1 ∈ Q, ρ = q1
a1−→ q2

a2−→ · · · , is called weakly fair if it is finite or if it is infinite
and for all a ∈ (Σ \ in) the following holds:

(∃k ≥ 1 . ∀i ≥ k . qi
a−→) =⇒ (∀k ≥ 1 . ∃i ≥ k . ai = a).

We denote the set of all weakly fair runs of S starting from q1 by wfrunS(q1). It
should be noted that for our results it is sufficient to use weak fairness instead
of strong fairness.5

Example 9. Let S = aiots(N3) be the associated AIOTS of the Petri net N3 in
Fig. 1c. An excerpt of S has been shown in Fig. 2. The following are three traces
of S starting in the initial state 01010:

ρ0 = 01010,

ρ1 = 01010
in?−→ 10010

msgB−→ 01110
Bmsg−→ 01001,

ρ2 = 01010
in?−→ 10010

msgB−→ 01110
Bmsg−→ 01001

out!−→ 01010.

The traces ρ0 and ρ2 are runs of S while ρ1 is not a run, since 01001 is not a
pure input state. Now consider the infinite trace indicated at the bottom line in
Fig. 2, that is an infinite alternation of in? and msgB. The trace is a run, since
it is infinite. But the run is not weakly fair, since from the second state on Bmsg
is always enabled but never taken.

Our first class of channel properties deals with the consumption of previ-
ously produced messages. We consider four groups of such properties (P1) -
(P4) with different strength. In each case we consider three variants which all
are parametrised w.r.t. a subset B of the communication channels.

Let us discuss the consuming properties (P1) of Def. 10 below for an AIOTS
S and a subset B of its channels. Property (P1.a) requires, for each channel

5 For a discussion of the different fairness properties see, e.g., [3].

11

a ∈ B, that if in an arbitrary reachable state q of S there is a message avail-
able on a, then S can consume the message possibly after the execution of
some autonomous actions. Let us comment on the role of the environment for
the formulation of this property. First, we consider arbitrary reachable states
q ∈ Post∗(q0) with q0 being the initial state of S. This means that we take into
account the worst environment which can let S go everywhere by providing (non-
deterministically) all inputs that S can accept. Then, at some point at which a
message is available on channel a, the environment can stop to provide further
inputs and waits whether S can autonomously reach a state q′ ∈ Post∗(q,Σ \ in)
in which it can consume from a, i.e. execute Ba. To allow autonomous actions
before consumption is inspired by the property of “output compatibility” stud-
ied for synchronously composed transition systems in [14]. Property (P1.b) does
not allow autonomous actions before consumption. It requires that S can im-
mediately consume the message in state q, similar to the property of specified
reception in [5]. Property (P1.c) requires that the message will definitely be con-
sumed on each weakly fair run of S starting from q and, due to the definition
of a system run, that this will happen in any environment whatever inputs are
provided.

As an example consider the AIOTS S = aiots(N3) associated with the
AIOPN N3 in Fig. 1c and its reachable state 01101 such that one message
is on channel msg. In this state S can autonomously perform the output out!
reaching state 01110 and then it can consume the message by performing Bmsg.
Since also in all other reachable states in which the channel is not empty S
can autonomously reach a state in which it can consume from the channel, S
satisfies property (P1.a) (for its only channel msg). However, S is not strongly
consuming (P1.b). For instance in state 01101, S cannot immediately consume
the message. On the other hand, S is necessarily consuming (P1.c). Whenever
in a reachable state q the channel is not empty an autonomous action, either
Bmsg or out!, is enabled. Hence q is not a pure input state and, due to the weak
fairness condition, eventually Bmsg or out! must be performed in any weakly
fair run starting from q. If Bmsg is performed we are done. If out! is performed
we reach a state where Bmsg is enabled and with the same reasoning eventually
Bmsg will be performed. This can be easily detected by considering Fig. 2.

The other groups of properties (P2) - (P4) express successively stronger (or
equivalent) requirements on the kind of consumption. For instance, (P3) requires
that the consumption will lead to a state in which the channel is empty. Again we
distinguish if this can be achieved after some autonomous actions (P3.a), can be
achieved immediately (P3.b), or must be achieved in any weakly fair run (P3.c).

Definition 10 (Consumption properties). Let S = (C,Σ,Q, q0,−→, val)
be an AIOTS with I/O-alphabet Σ = in] out] com and let B ⊆ C be a subset
of its channels.

P1: (Consuming)
a) S is B-consuming, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . q′
Ba−→ .

12

b) S is strongly B-consuming, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ q
Ba−→ .

c) S is necessarily B-consuming, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q) . Ba ∈ ρ .

P2: (Decreasing)
a) S is B-decreasing, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, a) < val(q, a) .

b) S is strongly B-decreasing, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, a) < val(q, a) .

c) S is necessarily B-decreasing, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, a) < val(q, a) .

P3: (Emptying)
a) S is B-emptying, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, a) = 0 .

b) S is strongly B-emptying, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, a) = 0 .

c) S is B-necessarily emptying, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, a) = 0 .

P4: (Wholly emptying)
a) S is B-wholly emptying, if for all q ∈ Post∗(q0),

val(q,B) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, B) = 0.

b) S is strongly B-wholly emptying, if for all q ∈ Post∗(q0),
val(q,B) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, B) = 0.

c) S is B-necessarily wholly emptying, if for all q ∈ Post∗(q0),
val(q,B) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, B) = 0 . ♦

Note if the initial state of S is reachable from all other reachable states, i.e. the
initial state is a home state, then S is B-wholly emptying.

The next class of channel properties concerns the termination of communi-
cation. We consider two variants: (P5.a) requires that in any weakly fair run, in
which consumption from a channel a has stopped, only finitely many subsequent
productions are possible, i.e. the channel is closed after a while. Property (P5.b)
expresses that the channel is immediately closed.

Definition 11 (Communication stopping). Let S be an AIOTS and B ⊆ C
be a subset of its channels.

P5: (Communication stopping)
a) S is B-communication stopping, if for all q ∈ Post∗(q0), ρ ∈ wfrunS(q)

and a ∈ B,]ρ(
Ba) = 0 =⇒]ρ(a

B) <∞ .

b) S is strongly B-communication stopping, if for all q ∈ Post∗(q0), ρ ∈
wfrunS(q) and a ∈ B,]ρ(

Ba) = 0 =⇒]ρ(a
B) = 0 . ♦

We say that an AIOTS S has a channel property P , if S has property P with
respect to the set C of all channels of S.

13

Definition 12 (Channel properties of AIOPNs). Let P be an arbitrary
channel property as defined above. An AIOPN N has property P w.r.t. some
subset B of its channels if its generated AIOTS aiots(N) has property P w.r.t.
B; N has property P if aiots(N) has property P .

Relevance of channel properties. The generic properties that we have defined
fit well with properties related to specific distributed mechanisms, algorithms
and applications. For instance:

– When sending an email the user must be confident that its mail will be even-
tually read. Such a property can be formalized as the necessarily consuming
property.

– Most distributed applications can be designed with an underlying token cir-
culation between the processes of the applications. This requires that at any
time there is at most one token in all channels and that this token can be im-
mediately handled. Such a property can be formalized as the strong wholly
emptying property.

– Recovery points are useful for applications prone to faults. While algorithms
for building recovery points can handle non-empty channels, the existence
(and identification) of states with empty channels eases this task. Such a
property can be formalized as the necessarily wholly emptying property.

– In UNIX, one often requires that a process should not write in a socket when
no reader of the socket is still present (and this could raise a signal). Such a
property can be formalized as the strong communication stopping property.

4.2 Relationships Between Channel Properties

Table 1 shows relationships between the channel properties and pointers to ex-
amples of AIOPNs from Fig. 1 and Fig. 3 which have the indicated properties.

All the downward implications inside the boxes are direct consequences of the
definitions. It is trivial to see that downward implication 3 is an equivalence, since
immediate consumption leads to a decreasing valuation. Downward implications
9 and 16 are equivalences, since repeated decreasing of messages on a channel
will eventually lead to an empty channel. The implications 4, 5, 7, 11-14 and 18
are proved in [12]. Additionally we have that all properties in box b) of Tab. 1
imply the strongest property in box a), since if S is strongly B-consuming we
can by repeated consumption empty all channels in B.

Let us now discuss some counterexamples. As discussed in Sect. 4.1, a coun-
terexample for the converse of implication 7 is the AIOPN N3 in Fig. 1c. An
obvious counterexample for the converse of the implications 2, 10, 11, 12, 13 is
given by the AIOPN N4 shown in Fig. 3a. N4 is also a counterexample for impli-
cation 6. The AIOPN N5 in Fig. 3b with channels a and b is a counterexample
for the converse of implication 15. The net can empty each single channel a and
b but it can never have both channels empty at the same time (after the first
message has been produced on a channel). A counterexample for the converse
of implication 14 is shown by the net N6 in Fig. 3c. The net can put a token on

14

b) c) a)

Strongly wholly emptying
4⇒ Necessarily wholly emptying

11⇒ Wholly emptying
(e.g. N3,N4,N6)

⇓1 ⇓8 ⇓15

Strongly emptying
5⇒ Necessarily emptying

12⇒ Emptying
(e.g. N3,N4,N5,N6)

⇓2 m9 m16

Strongly decreasing
6

6⇒ Necessarily decreasing
13⇒ Decreasing

(e.g. N4) (e.g. N3,N4,N5,N6)
m3 ⇓10 ⇓17

Strongly consuming
7⇒ Necessarily consuming

14⇒ Consuming
(e.g. N4) (e.g. N3,N4,N5) (e.g. N3,N4,N5,N6)

⇓18

Strongly com. stopping
(e.g. N3,N4,N5)

⇓19

Com. stopping
(e.g. N3,N4,N5)

Table 1: Relationships between channel properties and examples.

the channel a, but afterwards the transition Ba is not necessarily always enabled
which means there exists a weakly fair run such that there is always a token in
a and Ba is never fired.

Counterexamples for the converse of implication 17 rely on the idea to pro-
duce twice while consuming once. A counterexample for the converse of impli-
cation 18 is provided by a net that first produces a finite number n of messages
on a channel, then it consumes less than n of these messages and then it stops.
Counterexamples for the remaining converse implications are straightforward to
construct.

4.3 Compositionality of Channel Properties

Modular verification of systems is an important goal in any development method.
In our context this concerns the question whether channel properties are pre-
served in arbitrary environments or, more precisely, whether they are preserved
under asynchronous composition. In this section we show that indeed all channel
properties defined above are compositional. This can be utilised to get a method
for incremental design. The proofs of the results of this section are given in [12].

In order to relate channel properties of asynchronous compositions to chan-
nel properties of their constituent parts we need the next two lemmas. The first
one shows that autonomous executions of constituent parts (not involving in-
puts) can be lifted to executions of compositions. This is the essence to prove
compositionality of the properties of type (a) and type (b) in Def. 10.

15

aB a Ba

(a) N4

aB

Bb

a

b

Ba

bB

2

2

(b) N5

aB Ba

p0

out!

out!

p1a

(c) N6

Fig. 3: Examples of AIOPNs.

Lemma 13. Let S = (CS , ΣS , QS , q
0
S ,−→S , valS), T = (CT , ΣT , QT , q

0
T ,−→T ,

valT) be two composable AIOTSs, and let S ⊗ T = (C,Σ,Q, q0,−→, val). For
all (qS , qT ,v) ∈ Post∗(q0) and σ ∈ (ΣS \ inS)∗ it holds that

qS
σ−→S q′S =⇒ ∃v′ . (qS , qT ,v)

σ̄−→ (q′S , qT ,v
′),

with σ̄ ∈ (Σ \ in)∗ obtained from σ by replacing any occurrence of a shared label
a ∈ outS ∩ inT by the communication label aB.

The next lemma is crucial to prove compositionality of the “necessarily”
properties of type (c) in Def. 10 and the communication stopping properties in
Def. 11. It shows that projections of weakly fair runs are weakly fair runs again.
This result can only be achieved in the asynchronous context.

Lemma 14. Let S, T be two composable AIOTSs, and S ⊗ T = (C,Σ,Q, q0,
−→, val). Let q = (qS , qT ,v) ∈ Q and ρ ∈ wfrunS⊗T (q) be a weakly fair run.
Then ρ|S ∈ wfrunS(qS), is a weakly fair run.

Proposition 15 (Compositionality of Channel Properties). Let S and T
be two composable AIOTSs such that CS is the set of channels of S. Let B ⊆ CS
and let P be an arbitrary channel property as defined in Sec. 4.1. If S has property
P with respect to the channels B, then S ⊗ T has property P with respect to the
channels B. This holds analogously for asynchronous I/O-Petri nets (due to the
compositional semantics of AIOPNs; see Thm. 8).

Proposition 15 leads to the desired modular verification result for all proper-
ties except wholly emptying (P4): In order to check that a composition N⊗pnM
of two AIOPNs has a channel property P , i.e. P holds for all channels of the
composition, it is sufficient to know that N andM have property P and to prove
that N ⊗pnM has property P with respect to the new channels introduced by
the asynchronous composition.

16

Theorem 16 (Incremental Design). Let N and M be two composable
AIOPNs with shared actions ΣN ∩ΣM and let P be an arbitrary channel prop-
erty but (P4). If both N and M have property P and if N ⊗pnM has property
P with respect to the new channels ΣN ∩ΣM, then N ⊗pnM has property P .

5 Decidability of Channel Properties

We begin this section by recalling some information related to semi-linear sets
and decision procedures in Petri nets that we use in our proofs.

Let E ⊆ Nk, E is a linear set if there exists a finite set of vectors of Nk
{v0, . . . , vn} such that E = {v0 +

∑
1≤i≤n λivi | ∀i λi ∈ N}. A semi-linear

set [10] is a finite union of linear sets; a representation of it is given by the
family of finite sets of vectors defining the corresponding linear sets. Semi-linear
sets are effectively closed w.r.t. union, intersection and complementation. This
means that one can compute a representation of the union, intersection and
complementation starting from a representation of the original semi-linear sets.
E is an upward closed set if ∀v ∈ E. v′ ≥ v ⇒ v′ ∈ E. An upward closed set
has a finite set of minimal vectors denoted min(E). An upward closed set is a
semi-linear set which has a representation that can be derived from the equation
E = min(E) + Nk if min(E) is computable.

Given a Petri net N and a marking m, the reachability problem consists in
deciding whether m is reachable from m0 in N . This problem is decidable [18]
but none of the associated algorithms are primitive recursive. Furthermore this
procedure can be adapted to semi-linear sets when markings are identified to
vectors of N|P |. Based on reachability analysis, the authors of [9] design an
algorithm that decides whether a marking m is a home state, i.e. m is reachable
from any reachable marking. A more general problem is in fact decidable: given
a subset of places P ′ and a (sub)marking m on this subset, is it possible from
any reachable marking to reach a marking that coincides on P ′ with m?

In [20], the coverability is shown to be EXPSPACE-complete. The coverabil-
ity problem consists in determining, given a net and a target marking, whether
one can reach a marking greater or equal than the target. In [26] given a Petri
net, several procedures have been designed to compute the minimal set of mark-
ings of several interesting upward closed sets. In particular, given an upward
closed set Target, by a backward analysis one can compute the (representation
of) upward closed set from which Target is reachable. Using the results of [20],
this algorithm performs in EXPSPACE.

While in Petri nets, strong fairness is undecidable [6], weak fairness is decid-
able and more generally, the existence of an infinite sequence fulfilling a formula
of the following fragment of LTL is decidable [15]. The literals are (1) compar-
isons between places markings and values, (2) transition firings and (3) their
negations. Formulas are inductively defined as literals, conjunction or disjunc-
tion of formulas and GFϕ where GF is the infinitely often operator and ϕ is a
formula.

17

The next theorem establishes the decidability of the strong properties of type
(b) of Def. 10. Observe that their proofs given in [12] are closely related and that
they rely on the decidability of reachability and coverability problems.

Theorem 17. The following problems are decidable for AIOPNs: Is an AIOPN
N strongly B-consuming, strongly B-decreasing, strongly B-emptying, strongly
B-wholly emptying?

The next theorem establishes the decidability of the properties of type (a)
of Def. 10. Observe that their proofs rely on (1) the effectiveness of backward
analysis for upward closed marking sets (2) the decidability of reachability and
home space problems and (3) appropriate transformations of the net.

Theorem 18. The following problems are decidable for AIOPNs: Is an AIOPN
N B-consuming, B-decreasing, B-emptying, B-wholly emptying?

Proof.
B-consuming. Given an AIOPN N and B a subset of its channels, one decides
whether N is B-consuming as follows.

Let a ∈ B and Ea be the upward closed set of markings defined by:
Ea = {m | ∃t ∈ T with λ(t) = Ba and m ≥W−(t)}

Ea is the set of markings from which one can immediately consume some mes-
sage a. Let Fa be the upward closed set of markings defined by:

Fa = {m | ∃m′ ∈ Ea ∃σ ∈ T ∗. λ(σ) ∈ (Σ \ in)∗ ∧m σ−→ m′}
Fa is the set of markings from which one can later (without the help of the en-
vironment) consume some message a. One computes Fa by backward analysis.
Let G be defined by: G = {m | ∃a ∈ B. m(a) > 0 ∧m /∈ Fa}
G is a semi-linear set corresponding to the markings from which some message
a ∈ B will never be consumed. Then N is not B-consuming iff G is reachable.

B-emptying (and B-decreasing). Given an AIOPN N and B a subset of its
channels, one decides whether N is B-emptying as follows. First one builds a
net N ′:
– P ′ = P] {run}
– T ′ = T] {stop}
– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)
– W ′−(run, stop) = 1,, W ′+(run, stop) = 0, m′0(run) = 1
– ∀p ∈ P W ′−(p, stop) = W ′+(p, stop) = 0
– ∀t ∈ T such that λ(t) ∈ in W ′−(run, t) = W ′+(run, t) = 1
– ∀t ∈ T such that λ(t) /∈ in W ′−(run, t) = W ′+(run, t) = 0

N ′ behaves as N as long as stop is not fired. When stop is fired only transitions
not labelled by inputs are fireable. Thus N is B-emptying iff for all a ∈ B the
set of markings Za = {m | m(a) = 0} is a home space for N ′.
B-wholly emptying. Using the same construction N is B-weakly wholly emp-
tying if ZB = {m | m(B) = 0} is a home space for N ′.

ut

18

The next theorems, whose proofs are given in [12], establish the decidability of
the necessarily properties of type (c) of Def. 10 and the communication stopping
properties.

Theorem 19. The following problems are decidable for AIOPNs: Is an AIOPN
N necessarily B-consuming, necessarily B-decreasing, necessarily B-emptying,
necessarily B-wholly emptying?

Theorem 20. The following problems are decidable for AIOPNs: Is an AIOPN
N B-communication stopping, strongly B-communication stopping?

6 Conclusion and Future Work

We have introduced asynchronously composed I/O-Petri nets and we have stud-
ied various properties of their communication channels based on a transition
system semantics. Useful links between the channel properties are established.
We have shown that the channel properties are compositional thus supporting
incremental design. Moreover we have shown that the channel properties for
AIOPNs are decidable. This work can be extended in at least three directions.
The first direction would introduce new operations on AIOPNs, like hiding, to
design component systems in a hierarchical way by encapsulating subsystems.
The second direction concerns more general communication schemes like broad-
casting. Finally, we want to establish conditions for the preservation of channel
properties along the “vertical axis” namely by refinement, in particular within
the framework of modal Petri nets as considered in [8].

Acknowledgement: We would like to thank the reviewers of the submitted version
of this paper for many useful comments which led to a major restructuring of
the paper.

References

1. Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M., Grünbauer, J.,
Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems,
NATO Science Series, vol. 195, pp. 83–104. Springer Netherlands (2005)

2. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asyn-
chronously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation, Lecture Notes in Computer
Science, vol. 7148, pp. 56–71. Springer Berlin Heidelberg (2012)

3. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P.: Systems and Software Verification: Model-Checking Techniques and
Tools. Springer Publishing Company, Incorporated (2001)

4. Best, E., Devillers, R., Koutny, M.: Petri net algebra. Springer-Verlag New York,
Inc., New York, NY, USA (2001)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (Apr 1983)

19

6. Carstensen, H.: Decidability questions for fairness in petri nets. In: Brandenburg,
F., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 87, Lecture Notes in Computer
Science, vol. 247, pp. 396–407. Springer Berlin Heidelberg (1987)

7. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (Nov 2005)

8. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous com-
position of modal petri nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Trans-
actions on Petri Nets and Other Models of Concurrency V, Lecture Notes in Com-
puter Science, vol. 6900, pp. 96–120. Springer Berlin Heidelberg (2012)

9. Escrig, D.d.F., Johnen, C.: Decidability of Home Space Property. Rapports de
recherche. Université Paris-Sud. Centre d’Orsay. Laboratoire de recherche en in-
formatique, Université de Paris-Sud, Centre d’Orsay, Laboratoire de Recherche en
Informatique (1989)

10. Ginsburg, S., Spanier, E.H.: Semigroups, presburger formulas and languages. Pa-
cific Journal of Mathematics 16(2), 285–296 (1966)

11. Gomes, L., Barros, J.a.P.: Structuring and composability issues in petri nets mod-
eling. Industrial Informatics, IEEE Transactions on 1(2), 112–123 (2005)

12. Haddad, S., Hennicker, R., Møller, M.H.: Channel properties of asynchronously
composed petri nets. Tech. Rep. LSV-13-05, Laboratoire Spécification et
Vérification, ENS Cachan, France (2013)

13. Hennicker, R., Janisch, S., Knapp, A.: Refinement of components in connection-
safe assemblies with synchronous and asynchronous communication. In: Choppy,
C., Sokolsky, O. (eds.) Foundations of Computer Software. Future Trends and
Techniques for Development, Lecture Notes in Computer Science, vol. 6028, pp.
154–180. Springer Berlin Heidelberg (2010)

14. Hennicker, R., Knapp, A.: Modal interface theories for communication-safe com-
ponent assemblies. In: Cerone, A., Pihlajasaari, P. (eds.) Theoretical Aspects of
Computing ICTAC 2011, Lecture Notes in Computer Science, vol. 6916, pp. 135–
153. Springer Berlin Heidelberg (2011)

15. Jančar, P.: Decidability of a temporal logic problem for petri nets. Theor. Comput.
Sci. 74(1), 71–93 (Jul 1990)

16. Kindler, E.: A compositional partial order semantics for petri net components. In:
Azéma, P., Balbo, G. (eds.) Application and Theory of Petri Nets 1997, Lecture
Notes in Computer Science, vol. 1248, pp. 235–252. Springer Berlin Heidelberg
(1997)

17. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state ser-
vices. In: Kleijn, J., Yakovlev, A. (eds.) Petri Nets and Other Models of Concur-
rency - ICATPN 2007, Lecture Notes in Computer Science, vol. 4546, pp. 321–341.
Springer Berlin Heidelberg (2007)

18. Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Pro-
ceedings of the thirteenth annual ACM symposium on Theory of computing. pp.
238–246. STOC ’81, ACM, New York, NY, USA (1981)

19. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1981)

20. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6, 223–231 (1978)

21. Reisig, W.: Simple composition of nets. In: Franceschinis, G., Wolf, K. (eds.) Ap-
plications and Theory of Petri Nets, Lecture Notes in Computer Science, vol. 5606,
pp. 23–42. Springer Berlin Heidelberg (2009)

20

22. Souissi, Y.: On liveness preservation by composition of nets via a set of places. In:
Rozenberg, G. (ed.) Papers from the 11th International Conference on Applications
and Theory of Petri Net: Advances in Petri Nets 1991, Lecture Notes in Computer
Science, vol. 524, pp. 277–295. Springer Berlin Heidelberg (1991)

23. Souissi, Y., Memmi, G.: Composition of nets via a communication medium. In:
Rozenberg, G. (ed.) Advances in Petri Nets 1990, Lecture Notes in Computer
Science, vol. 483, pp. 457–470. Springer Berlin Heidelberg (1991)

24. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock free-
dom. Acta Informatica 49(2), 69–103 (2012)

25. Stahl, C., Wolf, K.: Deciding service composition and substitutability using ex-
tended operating guidelines. Data Knowl. Eng. 68(9), 819–833 (Sep 2009)

26. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability
problems in petri nets. Acta Informatica 21(6), 643–674 (1985)

21

