
Speci�cation of Asynchronous Component
Systems with Modal I/O-Petri Nets?

Serge Haddad1, Rolf Hennicker2, and Mikael H. Møller3

1 LSV, ENS Cachan & CNRS & Inria, France
2 Ludwig-Maximilians-Universität München, Germany

3 Aalborg University, Denmark

Abstract. Modal transition systems are an elegant way to formalise the
design process of a system through re�nement and composition. Here
we propose to adapt this methodology to asynchronous composition via
Petri nets. The Petri nets that we consider have distinguished labels for
inputs, outputs, internal communications and silent actions and �must�
and �may� modalities for transitions. The input/output labels show the
interaction capabilities of a net to the outside used to build larger nets by
asynchronous composition via communication channels. The modalities
express constraints for Petri net re�nement taking into account obser-
vational abstraction from silent transitions. Modal I/O-Petri nets are
equipped with a modal transition system semantics. We show that re-
�nement is preserved by asynchronous composition and by hiding of
communication channels. We study compatibility properties which ex-
press communication requirements for composed systems and we show
that these properties are decidable, they are preserved in larger contexts
and also by modal re�nement. On this basis we propose a methodology
for the speci�cation of distributed systems in terms of modal I/O-Petri
nets which supports incremental design, encapsulation of components,
stepwise re�nement and independent implementability.

1 Introduction

Component-based design is an important �eld in software engineering. Crucial
tasks in the design process concern the stepwise re�nement of speci�cations
towards implementations and the formation of component assemblies by compo-
sition. Many approaches and formalisms have been proposed for rigorous com-
ponent-based design supporting di�erent communication styles and di�erent no-
tions of re�nement. Among them particular attention has been attracted by
modal transition systems introduced by Larsen and Thomsen in 1988 [15] which
use distinguished may- and must-transitions to specify allowed and obligatory
behaviour and thus provide a �exible basis for re�nement. While re�nement con-
cerns the vertical dimension of system development, composition concerns the
horizontal dimension in which larger systems are built from smaller ones such

? This work has been partially sponsored by the EU project ASCENS, 257414.

that communication requirements must be respected. Communication proper-
ties are important when reasoning about distributed mechanisms, algorithms
and applications (e.g. management of sockets in UNIX, maintaining unicity of a
token in a ring based algorithm, guarantee of email reading, etc.).

Petri nets are a natural model for the design of concurrent and distributed
systems. They have received a great attention w.r.t. the composition and re�ne-
ment issues including communication properties. Composition of nets has been
addressed via several paradigms. The process algebra approach has been investi-
gated by several works leading to the Petri net algebra [5]. Such an approach is
closely related to synchronous composition. In [20] and [21] asynchronous com-
position of nets is performed via a set of places or, more generally, via a subnet
modelling some medium. Then structural restrictions on the subnets are pro-
posed in order to preserve global properties like liveness or deadlock-freeness.
In [18] a general composition operator is proposed and its associativity is estab-
lished. A closely related concept to composition is the one of open Petri nets
which has been used in di�erent contexts like the analysis of web services [22].
In parallel, very early works have been done for de�ning and analyzing re�ne-
ment of nets; see [6] for a survey. Looking at more recent works, [19] (which is
the closest to our contribution) studies the re�nement in the context of circuit
design. In [19] a notion of correct implementation is introduced which is shown
to be compositional. Several works also use an abstraction/re�nement paradigm
to propose e�cient veri�cation methods; see e.g. [8].

In our contribution we want to combine the advantages of modal transition
systems with the ability of Petri nets to represent in�nite state systems, with
their decidability potential and with their way how asynchronous composition
is achieved. A natural candidate are modal Petri nets introduced in [7] (and
later in [2] as a special case of Modal Process Rewrite Systems) which studies
modal re�nement and decidability results. Surprisingly, to the best of our knowl-
edge, no other approaches to modal Petri nets exist yet. On the other hand, for
asynchronous communication, we have recently introduced in [9] asynchronous
I/O-Petri nets, for which we have analysed several communication properties
from the compositionality and decidability point of view. Hence it is an obvious
goal to combine, adjust and extend the results achieved in [7] and [9] to a rigor-
ous design methodology that supports the vertical and the horizontal dimension
of software development in a uniform and compatible way.

Concerning the vertical dimension we consider modal re�nement; for the hor-
izontal dimension we consider asynchronous composition and we focus on the
message consuming and the necessarily message consuming properties which
are important requirements to ensure that previously sent messages can or must
necessarily be consumed by the communication partner. It turns out that the
necessarily message consuming property de�ned in [9] is in general not preserved
by modal re�nement. This is due to the fact that our re�nement notion supports
observational abstraction. Therefore we investigate the new notion of an observa-
tionally weakly fair run and show that necessarily message consuming is indeed
preserved by modal re�nement if we restrict the consumption requirement to all

2

observationall weakly fair runs. Due to the fairness requirement the necessarily
consuming property is also preserved on the horizontal layer when components
are put in compatible contexts. We also show that the new variants of the com-
munication properties are decidable.

This paper is structured as follows: In Sect. 2, we summarise our proposal by
means of an illustrating example. Sect. 3 presents the underlying formal de�n-
tions of modal asynchronous I/O-Petri nets (MAIOPNs) and their semantics in
terms of modal asynchronous I/O-transition systems (MAIOTSs). In Sect. 4, we
consider modal re�nement and show that it is compositional. We also show that
modal re�nement is preserved by channel hiding. In Sect. 5, we study (necessar-
ily) message consuming systems and we present the results on the preservation
of the communication properties by composition and by re�nement. As a conse-
quence, our framework supports the principle of independent implementability
in the sense of [1]. We �nish with some concluding remarks in Sect. 6.

2 Illustrating Example

We introduce an illustrating example to motivate our notions of modal asyn-
chronous I/O-Petri nets (MAIOPNs), their composition, hiding and re�nement.
For this purpose we consider a top down approach to the design of a simple com-
pressing system (inspired by [3]) which is able to receive �les for compression
and outputs either zip- or jpg-�les. We start with an interface speci�cation of
the system modelled by the CompressorInterface in Fig. 1a.

The interface speci�cation is presented by a labelled Petri net with distin-
guished input and output labels and with modalities on the transitions. The label
�le su�xed with �?� indicates an input action and the labels comprJpg, comprZip

su�xed with �!� indicate output actions. Following the idea of modal transition
systems introduced by Larsen and Thomsen in [15] transitions are equipped with
�must� or �may� modalities. A must-transition, drawn black, indicates that this
transition is required for any re�nement while a may-transition, drawn white,
may also be removed or turned into a must-transition. Models containg only
must-transitions represent implementations. In the example it is required that
input �les must always be received and that the option to produce zipped text
�les is always available while a re�nement may or may not support the produc-
tion of compressed jpg-�les for graphical data. Our interface speci�cation models
an in�nite state system since an unbounded number of �les can be received.

In the next step we propose an architecture for the realisation of the com-
pressing system as shown in Fig. 1b. It is given by an assembly of three connected
components, a Controller component which delegates the compression tasks, a
GifCompressor component which actually performs the compression of gif-�les
into jpg-�les and a TxtCompressor component which produces zip-�les from text
�les. The single components are connected by unbounded and unordered chan-
nels gif, jpg, ... for asynchronous communication.

The behaviour of the single components is modelled by the MAIOPNs shown
in Figs. 1c, 1e and 1f. The behaviour of the CompressorAssembly is given by the

3

asynchronous composition of the single Petri nets shown in Fig. 1d. For each pair
of shared input and output actions a new place is introduced, called communi-
cation channel. Transitions with a shared output label a (of a given component)
are connected to the new place a and the transition label is renamed to aB

in the composition. Similarly the place a is connected to transitions with the
corresponding input label a which is then renamed to Ba in the composition.
The result of our composition is very similar to the composition of open Petri
nets, see e.g. [16], which relies on matching of interface places. But our approach
is methodologically di�erent since we introduce the communication places only
when the composition is constructed. In that way our basic components are not
biased to asynchronous composition but could be used for synchronous compo-
sition as well. In this work we focus on asynchronous composition and we are
particularly interested in the analysis of generic communication properties ensur-
ing that messages pending on communication channels are eventually consumed.
Therefore our notion of modal asynchronous I/O-Petri net will comprise an ex-
plicit discrimination of channel places and, additionally to input/output labels
we use, for each channel a, distinguished communication labels aB for putting
messages on the channel and Ba for consuming messages from the channel. If the
set of channels is empty a MAIOPNmodels an interface or a primitive component
from which larger systems can be constructed by asynchronous composition.

file?

comprZip!

comprJpg!

(a) CompressorInterface.

Controller

GifCompressor TxtCompressor

gif jpg fail txt zip

file?
comprJpg!

comprZip!

(b) CompressorAssembly (architecture).

file?

gif!

txt!

jpg?

fail?

zip?

comprJpg!

comprZip!

(c) Controller. file?

gifB

txtB

Bjpg
Bfail

Bzip

comprJpg?

comprZip?

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

(d) CompressorAssembly.

gif? fail! jpg!

(e) GifCompressor.

txt? zip!

(f) TxtCompressor.

Fig. 1

4

In our example the behaviour of the CompressorAssembly is given by the asyn-
chronous composition Controller ⊗pn TxtCompressor ⊗pn GifCompressor shown in
Fig. 1d. It models a highly parallel system such that compressing of �les can
be executed concurrently and new �les can be obtained at the same time. Each
single compressing tool, however, is working sequentially. Its behaviour should
be clear from the speci�cations. The GifCompressor in Fig. 1e has an optional
behaviour modelled by a may-transition to indicate a compressing failure and
then the controller will submit the �le again.

After the assembly has been established we are interested in whether com-
munication works properly in the sense that pending messages on communi-
cation channels will be consumed. We will distinguish between two variants of
consumption requirements (see Sect. 5) expressing that for non-empty channels
there must be a possibility for consumption or, more strongly, that consumption
must always happen on each (observationally weakly fair) run. The fairness as-
sumption is essential to support incremental design (Thm. 9); for instance we
can �rst check that Controller ⊗pn TxtCompressor has the desired communication
properties for the channels {txt, zip}, then we check that the full assembly has
the desired communication properties for its channel subset {gif, jpg, fail} and
from this we can automatically derive that the assembly has the properties for
all its channels.

It remains to show that the CompressorAssembly is indeed a realisation of the
CompressorInterface. For this purpose we consider the black-box behaviour of the
assembly obtained by hiding the communication channels. This is done by apply-
ing our hiding operator to the CompressorAssembly denoted by
CompressorAssembly\pn{gif, jpg, fail, txt, zip}; see Fig. 2. Hiding moves all com-
munication labels aB and Ba for the hidden channels a to the invisible action τ .
In this way producing and consuming messages from hidden channels become
silent transitions. Now we have to establish a re�nement relation between Com-

pressorAssembly\pn{gif, jpg, fail, txt, zip} and the CompressorInterface by taking
into account the modalities on the transitions such that must-transitions of the
abstract speci�cation must be available in the re�nement and all transitions
of the re�nement must be allowed by corresponding may-transitions of the ab-
stract speci�cation. In our example the assembly has implemented the optional
jpg compression of the interface by a must-transition. Obviously we must also
deal with silent transitions which, in our example, occur in CompressorAssem-

bly\pn{gif, jpg, fail, txt, zip}. For this purpose we use a modal re�nement relation,
denoted by ≤∗m, which supports observational abstraction. In our case study this
is expressed by the proof obligation (1) in Fig. 2.

Fig. 2 illustrates that after the assembly is proven to be a correct realisa-
tion of the interface one can still further re�ne the assembly by component-
wise re�nement of its constituent parts. For instance, we can locally re�ne the
GifCompressor by resolving the may-modality for producing failures. There are
basically two possibilities: Either the failure option is removed or it is turned
into a must-transition. The component GifCompressorRef in Fig. 2 represents
such a re�nement of GifCompressor indicated by (2). We will show in Thm. 3.1

5

that re�nement is compositional, i.e. we obtain automatically that the assembly
CompressorAssemblyRef obtained by composition with the new gif compressor
is a re�nement of CompressorAssembly indicated by (3) in Fig. 2. As a crucial
result we will also show in Thm. 10 that re�nement preserves communication
properties which then can be automatically derived for CompressorAssemblyRef.
Finally, we must be sure that the re�ned assembly provides a realisation of the
original interface speci�cation CompressorInterface. This can be again automat-
ically achieved since hiding preserves re�nement (Thm. 3.2) which leads to (4)
in Fig. 2 and since re�nement is transitive.

Controller

GifCompressor TxtCompressor

gif jpg fail txt zip

file?
comprJpg!

comprZip!

CompressorAssembly

≤
∗ m3)

Controller

GifCompressorRef TxtCompressor

gif jpg fail txt zip

file?
comprJpg!

comprZip!

CompressorAssemblyRef

CompressorInterface

≤
∗ m1)

CompressorAssembly

\pn{gif, jpg, fail, txt, zip}

≤
∗ m4)

CompressorAssemblyRef

\pn{gif, jpg, fail, txt, zip}

hide

hide

GifCompressor

≤
∗ m2)

GifCompressorRef

compose

compose

Fig. 2: System development methodology.

In the next sections we will formally elaborate the notions discussed above.
We hope that their intended meaning is already su�ciently explained such that
we can keep the presentation short. An exception concerns the consideration of
the message consuming properties in Sect. 5 which must still be carefully studied
to ensure incremental design and preservation by re�nement.

3 Modal Asynchronous I/O-Petri Nets

In this section we formalise the syntax of MAIOPNs and we de�ne their tran-
sition system semantics. First we recall some basic de�nitions for modal Petri
nets and modal transition systems.

3.1 Modal Petri Nets and Modal Transition Systems

In the following we consider labelled Petri nets such that transitions are equipped
with labels of an alphabet Σ or with the symbol τ that models silent transitions.
We write Στ for Σ] {τ}. We assume the reader to be familiar with the basic
notions of labelled Petri nets consisting of a �nite set P of places, a �nite set
T of transitions, a set of arcs between places and transitions (transitions and

6

places resp.), formalised by incidence matrices W− and W+, an initial marking
m0 and a labelling function λ : T → Στ . In [7] we have introduced modal Petri
nets N = (P, T, T�, Σ,W−,W+, λ,m0) such that T� ⊆ T is a distinguished

subset of must-transitions. We write m
t
� m′ if a transition t ∈ T is �rable

from a marking m leading to a marking m′. If t ∈ T� we write m
t
� m′. If

λ(t) = a we write m
a
�m′ and for t ∈ T� we write m

a
�m′. The notation is

extended as usual to �ring sequences m
σ
� m′ with σ ∈ T ∗ and to m

σ
� m′

with σ ∈ (T�)∗. A markingm is reachable if there exists a �ring sequence σ ∈ T ∗

such that m0
σ
�m.

Modal transition systems have been introduced in [15]. We will use them to
provide semantics for modal Petri nets. A modal transition system is a tuple
S = (Σ,Q, q0, �, �), such that Σ is a set of labels, Q is a set of states,
q0 ∈ Q is the initial state, � ⊆ Q × Στ × Q is a may-transition relation, and

� ⊆ � is a must-transition relation. We explicitely allow the state space Q
to be in�nite which is needed to give interpretations to modal Petri nets that
model in�nite state systems.

The semantics of a modal Petri net N = (P, T, T�, Σ,W−,W+, λ,m0) is
given by the modal transition system mts(N) = (Σ,Q, q0, �, �) representing
the reachability graph of the net by taking into account modalities: Q ⊆ NP is

the set of reachable markings of N , � = {(m, a,m′) | a ∈ Στ and m
a
�m′},

� = {(m, a,m′) | a ∈ Στ and m
a
�m′}, and q0 = m0.

In the sequel we will use the following notations for modal transition systems.

We write may-transitions as q
a
� q′ for (q, a, q′) ∈ � and similarly must-

transitions as q
a
� q′. The notation is extended in the usual way to �nite

sequences σ ∈ Σ∗τ by the notations q
σ
� q′ and q

σ
� q′. The set of reachable

states of S is given by Reach(S) = {q | ∃σ ∈ Σ∗τ . q
0

σ
� q}. For a sequence

σ ∈ Σ∗τ the observable projection obs(σ) ∈ Σ∗ is obtained from σ by removing

all occurrences of τ . Let a ∈ Σ be a visible action and q, q′ ∈ Q. We write q
a
� q′

if q
σ
� q′ with obs(σ) = a and we call q

a
� q′ a weak may-transition. Similarly

we write q
a
� q′ if all transitions are must-transitions and call q

a
� q′ a weak

must-transition. The notation is extended as expected to �nite sequences σ ∈ Σ∗

of visible actions by the notations q
σ
� q′ and q

σ
� q′. In particular, q

ε
� q′

means that there is a (possibly empty) sequence of silent may-transitions from q

to q′ and similarly q
ε
� q′ expresses a �nite sequence of silent must-transitions.

3.2 Modal Asynchronous I/O-Petri Nets, Composition and Hiding

In this paper we consider systems which may be open for communication with
other systems and may be composed to larger systems. The open actions are
modelled by input labels (for the reception of messages from the environment)
and output labels (for sending messages to the environment) while communi-
cation inside an asynchronously composed system takes place by removing or

7

putting messages to distinguished communication channels. Given a �nite set C
of channels, an I/O-alphabet over C is the disjoint union Σ = in] out] com of
pairwise disjoint sets of input labels, output labels and communication labels,
such that com = {Ba, aB | a ∈ C}. For each channel a ∈ C, the label Ba represents
consumption of a message from a and aB represents putting a message on a. A
modal asynchronous I/O-Petri net (MAIOPN) N = (C,P, T, T�, Σ,W−,W+,
λ,m0) is a modal Petri net such that C ⊆ P is a set of channel places which are
initially empty, Σ = in] out] com is an I/O-alphabet over C, and for all a ∈ C
and t ∈ T , there exists an (unweighted) arc from a to t i� λ(t) = Ba and there
exists an (unweighted) arc from t to a i� λ(t) = aB.

The asynchronous composition of MAIOPNs works as for asynchronous
I/O-Petri nets considered in [9] by introducing new channel places and appro-
propriate transitions for shared input/output labels. The non-shared input and
output labels remain open in the composition. Moreover, we require that the
must-transitions of the composition are the union of the must-transitions of the
single components. The asynchronous composition of two MAIOPNs N andM
is denoted by N⊗pnM. It is commutative and also associative under appropriate
syntactic restrictions on the underlying alphabets. An example of a composition
of three MAIOPNs is given in Fig. 1d.

We introduce a hiding operator on MAIOPNs which allows us to hide com-
munication channels. In particular, it allows us to compute the black-box be-
haviour of an assembly when all channels are hidden. Let N be a MAIOPN
with I/O-alphabet ΣN = inN] outN] comN , and let H ⊆ CN be a subset
of its channels. The channel hiding of H in N is the MAIOPN N \pn H with
channels C = CN \ H, with I/O-alphabet Σ = inN] outN] com such that
com = {Ba, aB | a ∈ C}, and with the labelling function:

λ(t) =

{
τ if ∃a ∈ H . λN (t) =

Ba or λN (t) = aB,

λN (a) otherwise.

3.3 Semantics: Modal Asynchronous I/O-Transition Systems

We extend the transition system semantics of modal Petri nets de�ned in Sect. 3.1
to MAIOPNs. For this purpose we introduce modal asynchronous I/O-transition
system (MAIOTS) S = (C,Σ,Q, q0, �, �, val) which are modal transition
systems such that C is a �nite set of channels, Σ = in] out] com is an I/O-
alphabet over C, and val : Q −→ NC is a channel valuation function which
determines for each state q ∈ Q how many messages are actually pending on
each channel a ∈ C. Instead of val(q)(a) we write val(q, a). We require that ini-
tially all channels are empty, i.e. val(q0, a) = 0 for all a ∈ C, that for each a ∈ C
putting aB and consuming Ba messages from a has the expected behaviour, and
that the open input/output actions have no e�ect on a channel, i.e.

q
aB−→ q′ =⇒ val(q′) = val(q)[a++]4,

4 val(q)[a++] (val(q)[a−−] resp.) denotes the update of val which increments (decre-
ments) the value of a and leaves the values of all other channels unchanged.

8

q
Ba−→ q′ =⇒ val(q, a) > 0 and val(q′) = val(q)[a−−], and

for all x ∈ (in ∪ out), q
x−→ q′ =⇒ val(q′) = val(q).

The semantics maiots(N) of a modal asynchronous I/O-Petri net N is given
by the transition system semantics of modal Petri nets such that the reachable
markings are the states. Additionally we de�ne the associated channel valu-
ation function val : Q −→ NC such that the valuation of a channel a in a
current state m is given by the number of tokens on a under the marking m,
i.e. val(m, a) = m(a). For instance, the semantics of the CompressorInterface in
Sect. 2 and of the Controller leads to in�nite state transition systems; the transi-
tion systems associated with the two compressor components have two reachable
states and the transitions between them correspond directly to their Petri net
representations in Fig. 1e and Fig. 1f.

The asynchronous composition S⊗T of two MAIOTSs S and T works as for
asynchronous I/O-transition systems in [9] taking additionally care that must-
transitions of S and T induce must-transitions of S ⊗ T . The composition in-
troduces new channels CST = ΣS ∩ ΣT for shared input/output labels. Every
transition with a shared output label a becomes a transition with the communi-
cation label aB, and similarly transitions with input labels a become transitions
with label Ba. The state space of the composition is (the reachable part of) the
Cartesian product of the underlying state spaces of S and T together with the
set NCST of valuations for the new channels such that transitions labelled by
aB and Ba have the expected e�ect on the new channels; for details see [9]. The
asynchronous composition of two MAIOTSs is commutative and also associative
under appropriate syntactic restrictions on the underlying alphabets.

We also introduce a hiding operator on MAIOTSs that hides communication
channels and moves all corresponding communication labels to τ . Let S = (CS ,
ΣS , QS , q

0
S , �S , �S , valS) be a MAIOTS with I/O-alphabet ΣS = inS]outS]

comS , and let H ⊆ CS be a subset of its channels. The channel hiding of H in
S is the MAIOTS S \H = (C,Σ,QS , q

0
S , �, �, val), such that C = CS \H,

Σ = inS] outS] com with com = {Ba, aB | a ∈ C}, val(q, a) = valS(q, a) for all
q ∈ Q, a ∈ C, and the may-transition relation is given by:

� = {(q, a, q′) | a ∈ (Στ \ {Ba, aB | a ∈ H}) and q
a
�S q

′} ∪

{(q, τ, q′) | ∃a ∈ H such that either q
aB

�S q
′ or q

Ba
�S q

′},

The must-transition relation � is de�ned analogously.
For the results developed in the next sections it is important that our tran-

sition system semantics is compositional and compatible with hiding as stated
in the next theorem. The proof is given in Appendix A of [11].

Theorem 1. Let N and M be two composable MAIOPNs and let H ⊆ CN be
a subset of the channels of N . The following holds:

1. maiots(N⊗pnM) = maiots(N)⊗maiots(M) (up to isomorphic state spaces),
2. maiots(N \pn H) = maiots(N) \H.

9

4 Modal Re�nement

The re�nement relation between MAIOPNs will be de�ned by considering their
semantics, i.e. MAIOTSs. For this purpose we adapt the weak modal re�nement
relation for modal transition systems introduced in [13] which is based on a
simulation relation in both directions. It says that must-transitions of an abstract
speci�cation must be preserved by the re�nement while may-transitions of a
concrete speci�cation must be allowed by the abstract one. In any case silent
transitions labelled with τ can be inserted, similarly to weak bisimulation, but
respecting modalities. Observational abstraction from silent transitions is indeed
important in many examples; e.g. when relating the encapsulated behaviour of an
assembly to a requirements speci�cation as discussed in Sect. 2. If all transitions
of the abstract speci�cation are must-transitions, modal re�nement coincides
with weak bisimulation. Obviously, the modal re�nement relation de�ned as
follows is re�exive and transitive.

De�nition 2 (Modal re�nement). Let S = (C,Σ,QS , q
0
S , �S , �S , valS)

and T = (C,Σ,QT , q
0
T , �T , �T , valT) be two MAIOTSs with the same I/O-

alphabet Σ over channels C. A relation R ⊆ QS × QT is a modal re�nement
relation between S and T if for all (qS , qT) ∈ R and a ∈ Σ:

1: qT
a
�T q

′
T =⇒ ∃q′S ∈ QS . qS

a
�S q

′
S ∧ (q′S , q

′
T) ∈ R,

2: qT
τ
�T q

′
T =⇒ ∃q′S ∈ QS . qS

ε
�S q

′
S ∧ (q′S , q

′
T) ∈ R,

3: qS
a
�S q

′
S =⇒ ∃q′T ∈ QT . qT

a
�T q

′
T ∧ (q′S , q

′
T) ∈ R,

4: qS
τ
�S q

′
S =⇒ ∃q′T ∈ QT . qT

ε
�T q

′
T ∧ (q′S , q

′
T) ∈ R.

We say that S is a modal re�nement of T , written S ≤∗m T , if there exists a
modal re�nement relation R between S and T such that (q0S , q

0
T) ∈ R. We write

qS ≤∗m qT when (qS , qT) ∈ R for a modal re�nement relation R. ♦

The next theorem shows that modal re�nement is preserved by asynchronous
composition and by channel hiding. The compositionality result stems in prin-
ciple from [13] and is proved in Appendix B of [11] in the context of MAIOTS.
The second result is also proved in Appendix B of [11] similarly to a result in [12]
for hiding in synchronous systems.

Theorem 3. Let S, T , E and F be MAIOTSs such that C is the set of channels
of S and of T and let H ⊆ C.

1. If S ≤∗m T , E ≤∗m F and S and E are composable, then T and F are
composable and S ⊗ E ≤∗m T ⊗ F .

2. If S ≤∗m T then S \H ≤∗m T \H.

The re�nement de�nition and results are propagated to modal asynchronous
I/O-Petri nets in the obvious way: A MAIOPN M is a modal re�nement of
a MAIOPN N , also denoted by M ≤∗m N , if maiots(M) ≤∗m maiots(N). The
counterparts of Thm. 3.1 and 3.2 for MAIOPNs are consequences of the semantic

10

compatibility results in Thm. 1.1. Examples for modal re�nements of MAIOPNs
and applications of the theorem are pointed out in Sect. 2.

The decidability status of the modal re�nement problem for MAIOPNs de-
pends on the kind of Petri nets one considers. Observing that there is a simple
reduction from the bisimilarity problem to the modal re�nement problem and
that the former problem is undecidable for Petri nets [14], one gets that the lat-
ter problem is also undecidable; for an evolved discussion see [2]. However when
one restricts Petri nets to be modally weakly deterministic, the modal re�ne-
ment problem becomes decidable. The modal weak determinism of Petri nets is
a behavioural property which can also be decided (see [7] for both proofs). In
addition, determinism is a desirable feature for a speci�cation (when possible).
For instance modal language speci�cation is an alternative to modal transition
systems that presents such a behaviour [17].

5 Message Consuming Systems

In this section we consider generic properties concerning the asynchronous com-
munication via channels inspired by the various channel properties studied in [9].
We focus on the message consuming and the necessarily message consuming
properties and generalise them to take into account modalities and observational
abstraction w.r.t. silent transitions. Our goal is that the properties scale up to
larger contexts (to support incremental design) and that they are preserved by
modal re�nement. Moreover we consider their decidability. For the de�nitions
we rely on the semantics of MAIOPNs, i.e. on MAIOTSs.

Let us �rst discuss the message consuming property (a) of Def. 4 for a
MAIOTS S and a subset B of its channels. It requires, for each channel a ∈ B,
that if in an arbitrary reachable state q of S there is a message on a, then S
must be able to consume it, possibly after some delay caused by the execution
of autonomous must-transitions. All transitions that do not depend on the envi-
ronement, i.e. are not related to input labels, are considered to be autonomous.
Our approach follows a �pessimistic� assumption taking into account arbitrary
environments that can let the system go where it wants and can also stop to
provide inputs at any moment. It is important that we require must-transitions
since the consuming property should be preserved by modal re�nement. It is
inspired by the notion of �output compatibility� studied for synchronously com-
posed transition systems in [12].

A central role when components run in parallel is played by fairness assump-
tions; see, e.g., [4]. First we must de�ne what we mean by a run and then we
will explain our fairness notion. A run is a �nite or in�nite sequence of state
transitions which satis�es a maximality condition. In principle a run can only
stop when a deadlock is reached. However we must be careful since (1) we are
dealing with open systems whose executions depend on the input from the en-
vironment, (2) we must take into account that transitions with a may-modality
can be skipped in a re�nement, and (3) we must be aware that also silent must-
transitions without successive mandatory visible actions can be omitted in a re-

11

�nement; cf. Def. 2, rule (2). In particular divergence in an abstract state could
be implemented by a deadlock. If one of the above conditions holds in a certain
state it is called a potential deadlock state.

Formally, let S = (C,Σ,Q, q0, �, �, val) be a MAIOTS with Σ = in]
out]com. A state q ∈ Q is a potential deadlock state if for all a ∈ (Σ \ in), there
is no state q′ ∈ Q such that q

a
� q′. A run of S starting in a state q1 ∈ Q is a

�nite or in�nite sequence ρ = q1
a1
� q2

a2
� q3

a3
� · · · with ai ∈ Στ and qi ∈ Q

such that, if the sequence is �nite, its last state is a potential deadlock state. We
assume that system runs are executed in a runtime infrastructure which follows
a fair scheduling policy. In our context this means that any visible autonomous
action a, that is always enabled by a weak must-transition from a certain state

on, will in�nitely often be executed. Formally, a run ρ = q1
a1
� q2

a2
� · · · is

called observationally weakly fair if it is �nite or if it is in�nite and then for all
a ∈ (Σ \ in) the following holds:

(∃k ≥ 1 . ∀i ≥ k . ∃q′ . qi
a
� q′) =⇒ (∀k ≥ 1 . ∃i ≥ k . ai = a).

We denote the set of all observationally weakly fair runs of S starting from q1 by
owfrunS(q1). For instance, for the MAIOPNM in Fig. 3b on page 14 an in�nite
run which always executes aB,Ba, . . . is observationally weakly fair. A (diverging)
run ofM which always executes τ from a certain state on is not observationally
weakly fair since Ba is then always enabled by a weak must-transition but never
taken.

Note that for our results it is su�cient to use a weak fairness property in-
stead of strong fairness. We are now ready to de�ne also the necessarily con-
suming property (b) which requires that whenever a message is pending on a
communication channel then the message must eventually be consumed on all
observationally weakly fair runs.

De�nition 4 (Message consuming). Let S = (C,Σ,Q, q0, �, �, val) be a
MAIOTS with I/O-alphabet Σ = in] out] com and let B ⊆ C be a subset of its
channels.

a) S is message consuming w.r.t. B if for all a ∈ B and all q ∈ Reach(S),

val(q, a) > 0 =⇒ ∃q′, q′′ ∈ Q . ∃σ ∈ (Σ \ in)∗ . q
σ
� q′

Ba
� q′′.

b) S is necessarily message consuming w.r.t. B if for all a ∈ B, q ∈ Reach(S),
val(q, a) > 0 =⇒ ∀ρ ∈ owfrunS(q) .

Ba ∈ ρ .5

S is (necessarily) message consuming if S is (necessarily) message consuming
w.r.t. C. ♦

In the special case, in which all may-transitions are must-transitions and no
silent transitions occur observationally weakly fair runs coincide with weakly
fair runs and the two consuming properties coincide with the corresponding
properties in [9].

5 i.e. there is a transition in ρ labelled by Ba.

12

Proposition 5. Let S be a MAIOTS. If S is necessarily message consuming
w.r.t B then S is message consuming w.r.t B.

The proof can found in Appendix C of [11]. It is an adoptation of the one in [10].

The de�nitions and the proposition are propagated to modal asynchronous
I/O-Petri nets in the obvious way. For instance, a MAIOPN N is (necessar-
ily) message consuming if maiots(N) is (necessarily) message consuming. All
MAIOPNs considered in Sect. 2 are necessarily message consuming.

As stated in the introduction, Petri nets are a useful model since (1) they
model in�nite state systems and (2) several relevant properties of transition
systems are decidable. The following proposition whose proof is an adaption of
the one in [9] establishes that one can decide both consuming properties. For
sake of completeness, its proof can be found in Appendix C of [11].

Proposition 6. Let N be a MAIOPN and let B ⊆ C be a subset of its channels.
The satisfaction by N of the message consuming and the necessarily message
consuming properties w.r.t. B are decidable.

Both message consuming properties are compositional; they are preserved
when systems are put into larger contexts. The proof of the compositionality
of the message consuming property (a) relies on the fact that autonomous ex-
ecutions of constituent parts (not involving inputs) can be lifted to executions
of compositions. To prove compositionality of the necessarily consuming prop-
erty (b) one shows that projections of observationally weakly fair runs to con-
stituent parts of a composition are again observationally weakly fair runs. Both
facts and the following consequences are proved in Appendix C of [11]. The proof
has the same shape as the proof of Proposition 15 in [9] which is given in [10].

Proposition 7. Let S and T be two composable MAIOTSs such that CS is the
set of channels of S. Let B ⊆ CS . If S is (necessarily) consuming w.r.t. B, then
S ⊗ T is (necessarily) consuming w.r.t. B.

Proposition 7 leads directly to the desired modular veri�cation result which
allows us to check consuming properties in an incremental manner: To show that
a composed system S ⊗ T is (necessarily) message consuming it is su�cient to
know that both constituent parts S and T have this property and to check that
S⊗T is (necessarily) message consuming w.r.t. the new channels established for
the communication between S and T , i.e. that S and T are compatible.

De�nition 8 (Compatibility). Two composable MAIOTSs S and T with shared
labels ΣS ∩ΣT are (necessarily) message consuming compatible if S⊗T is (nec-
essarily) message consuming w.r.t. ΣN ∩ΣM. ♦

Theorem 9 (Incremental Design). Let S and T be (necessarily) message
consuming compatible. If both S and T are (necessarily) message consuming,
then S ⊗ T is (necessarily) message consuming.

13

All results hold analogously for asynchronous I/O-Petri nets due to the com-
positional semantics of MAIOPNs; see Thm. 1.1 An application of incremental
design has been discussed in Sect. 2.

An important issue concerns the preservation of the message consuming prop-
erties by re�nement. We can show that this holds for modal re�nement which
is not considered in [9]. The preservation of the message consuming property
relies on the fact that for any �concrete� reachable state there is a related �ab-
stract� state with the same number of messages on each channel. To prove the
preservation of the necessarily consuming property the essential point is to show
that for any observationally weakly fair run of a concrete MAIOTS there is a
corresponding observationally weakly fair run of the abstract MAIOTS with the
same visible actions. Both facts and the following consequences are proved in
Appendix C of [11].

Theorem 10. Let S, T be two MAIOTSs with channels C and let S ≤∗m T .
Let B ⊆ C. If T is (necessarily) message consuming w.r.t. B, then S is (nec-
essarily) message consuming w.r.t. B. By de�nition, the theorem propagates to
MAIOPNs.

Example 11. The nets in Fig. 3 show an abstract MAIOPN N and a concrete
MAIOPNM with silent τ -transitions. Both nets have a single channel place a.
Obviously,M≤∗m N is a modal re�nement. It is also clear that N is necessarily
message consuming. By Thm. 10,M is necessarily message consuming as well.
Indeed, as pointed out above, a diverging run of M which always executes τ
from a certain state on is not observationally weakly fair and therefore needs
not to be considered. This shows also why weakly fair runs are not appropriate
here since a diverging run ofM is weakly fair (it always visits a state in which
Ba is not immediately enabled) but does not consume.

p

aB

a

Ba

(a) Abstract MAIOPN N
p

aB

a

Ba q
τ

r

τ

(b) Concrete MAIOPNM

Fig. 3: Necessarily consuming nets and modal re�nement

As a consequence of Thm. 3.1 and Thm. 10 our theory supports the princi-
ple of independent implementability in the sense of [1]. This fact is applied in
Sect. 2 to obtain the global re�nement (3) in Fig. 2 from the local re�nement
(2) preserving the necessarily consuming property.

Corollary 12 (Independent Implementability). Let S, T , E and F be
MAIOTSs. If T and F are (necessarily) message consuming compatible and
S ≤∗m T and E ≤∗m F , then S and E are (necessarily) message consuming com-
patible and S ⊗ E ≤∗m T ⊗ F . This holds analogously for MAIOPNs.

14

6 Conclusion and Future Work

We have developed a fully integrated approach for the design of asynchronously
composed component systems based on the formalism of MAIOPNs. Our ap-
proach ensures that the communication properties are preserved by asynchronous
composition and by modal re�nement, the basic ingredients of the design process.
Several continuations of this work are possible. First, it would be interesting to
see how our approach works in larger case studies and concrete applications. The
�Assume/Guarantee� approach is a standard way to substitute a component by a
behavioural interface in order to make easier the compositional veri�cation. We
plan to investigate how this approach can be integrated in our framework. Also
it would be interesting to consider further operators on speci�cations like quo-
tients. For the latter we would be faced with the problem to �nd mild conditions
for the existence of quotients in the context of modal re�nement which supports
observational abstraction. Finally, broadcasting is an appropriate communica-
tion mechanism in the asynchronous environment. So it would be interesting to
investigate how our approach can be adapted to this communication operator.

References

1. L. de Alfaro and T. A. Henzinger. Interface-based Design. Engineering Theories
of Software-intensive Systems, NATO Science Series: Mathematics, Physics, and
Chemistry, Vol. 195, Springer, 83-104, 2005.

2. N. Bene², J. K°etínský. Modal Process Rewrite Systems Proc of Int. Conf. The-
oretical Aspects of Computing (ICTAC 2012) vol. 7521 of LNCS, pages 120�135,
Springer, 2012.

3. M. Bernardo, P. Ciancarini, L. Donatiello. Architecting Families of Software Sys-
tems with Process Algebras. ACM Trans. Softw. Eng. Meth., 11(4):386-426, 2002.

4. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci and P. Schnoe-
belen. Systems and Software Veri�cation: Model-Cheking Techniques and Tools.
Springer, 2001.

5. E. Best, R. Devillers and M. Koutny. Petri Net Algebra. Springer Monographs in
Theoretical Computer Science, 2001.

6. W. Brauer, R. Gold, W. Vogler. A survey of behaviour and equivalence preserving
re�nements of Petri nets. Applications and Theory of Petri Nets 1989, 1-46, 1989.

7. D. Elhog-Benzina, S. Haddad and R. Hennicker. Re�nement and asynchronous
composition of modal Petri nets. In Transactions on Petri Nets and Other Models
of Concurrency, V, LNCS 6900, 96�120, 2012.

8. P. Ganty, J.-F. Raskin, L. Van Begin. From Many Places to Few: Automatic
Abstraction Re�nement for Petri Nets, ATPN 2007, LNCS 4546, p. 124-143, 2007.

9. S. Haddad, R. Hennicker and M. H. Møller. Channel Properties of Asynchronously
Composed Petri Nets. 34th Int. Conf. on Appl. and Theory of Petri Nets and
Concurrency, LNCS, 2013, to appear. Long version in Research Report LSV-13-05,
ENS Cachan, France, 2013.

10. S. Haddad, R. Hennicker and M. H. Møller. Channel Properties of Asynchronously
Composed Petri Nets. Research Report LSV-13-16, Laboratoire Spéci�cation et
Véri�cation, ENS Cachan, France

15

11. S. Haddad, R. Hennicker and M. H. Møller. Speci�cation of Asynchronous Compo-
nent Systems with Modal I/O-Petri Nets. Research Report LSV-13-05, Laboratoire
Spéci�cation et Véri�cation, ENS Cachan, France

12. R. Hennicker and A. Knapp. Modal Interface Theories for Communication-Safe
Component Assemblies. Proc. of the 8th Int. Colloquium on Theoretical Aspects
of Computing (ICTAC'11), LNCS 6916, 135�153, 2011.

13. H. Hüttel and K. G. Larsen. The Use of Static Constructs in A Modal Process
Logic. In Logic at Botik 1989, 163�180, 1989.

14. P. Jancar. Undecidability of Bisimilarity for Petri Nets and Related Problems.
Theoretical Computer Science, 148, 1995, pp. 281-301

15. K. G. Larsen and B. Thomsen. A Modal Process Logic. 3rd Annual Symp. Logic
in Computer Science, LICS 1988, 203�210, IEEE Computer Society, 1988.

16. N. Lohmann, P. Massuthe and K. Wolf. Operating guidelines for �nite-state ser-
vices. ICATPN 2007, LNCS vol. 4546, 321�341, 2007.

17. J.-B. Raclet. Residual for Component Speci�cations. Proc. of the 4th International
Workshop on Formal Aspects of Component Software (FACS07), Sophia-Antipolis,
France, September 2007.

18. W. Reisig. Simple composition of nets. 30th Int. Conf. on Applications and Theory
of Petri Nets, LNCS 5606, 23�42, 2009.

19. M. Schäfer, W. Vogler. Component re�nement and CSC-solving for STG decom-
position. Theor. Comput. Sci. 388(1-3): 243-266, 2007.

20. Y. Souissi. On liveness preservation by composition of nets via a set of places. 11th
Int. Conf. on Applications and Theory of Petri Nets, LNCS 524, 277�295, 1990.

21. Y. Souissi and G. Memmi. Composition of nets via a communication medium. 10th
Int. Conf. on Applications and Theory of Petri Nets, LNCS 483, 457�470, 1989.

22. C. Stahl and K. Wolf. Deciding service composition and substitutability using
extended operating guidelines. Data Knowl. Eng., 68(9), 819�833, 2009.

16

