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Abstract. We report on the development of a large-scale simulation
framework for environmental modelling. The framework allows to cou-
ple various simulation models from natural and social science disciplines
to perform integrative simulations. It has been constructed following a
development methodology based on the identi�cation of di�erent func-
tional views, which are concerned with data exchange, simulation space
and coordination of distributed simulation models with respect to (logi-
cal) simulation time. On all levels of the development we have rigorously
applied modelling and speci�cation techniques including the last step, in
which the di�erent views are integrated into a component model of the
full framework. The requirements for the correct coordination of simula-
tion models have been formally speci�ed in terms of the process algebra
FSP and the design model has been model checked against the coordina-
tion requirements. Within the GLOWA-Danube project the framework
has been successfully instantiated to construct the distributed simula-
tion system Danubia which integrates up to 15 simulation models from
various disciplines to model the consequences of global climate change
for the water household on regional scales.

1 Introduction

Global climate change has an increasing impact on our natural and social envi-
ronment. Therefore it is important to understand better the complex, mutually
dependent processes occurring in nature and in socio-economic systems which
calls for interdisciplinary research. Computer-based simulations have emerged
as an appropriate means for studying possible scenarios for the future and to
support the management of adaptation and/or prevention strategies. While in
the past simulation models often were developed as monolithic applications by
a particular discipline to provide specialised answers, nowadays the need for
interdisciplinary modellling and integrative simulation has been recognized
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In an integrative simulation system several simulation models are coupled in
order to analyse dependencies and transdisciplinary e�ects of the simulated pro-
cesses. Following [20] and [8] environmental simulation models can be classi�ed
with respect to their basic modelling approach (process-, data- or agent-based
modelling), treatment of simulation space (spatially distributed or lumped) and
treatment of simulation time (discrete or continuous)1. Moreover, in a network
of coupled simulation models one can distinguish whether the models are se-
quentially executed one after the other (possibly with iterations), whether they
are concurrently executed and whether they are dependent from each other.

Coupling of simulation models from various disciplines is a non-trivial task,
both conceptually and also from the implementation point of view. One has to
cope, among others, with di�erent simulation paradigms, di�erent resolutions of
space, and di�erent local time scales to represent simulation time. For instance,
in natural sciences often a process-based simulation approach is preferred, models
typically use grid-based resolutions of space, and the time scale typically ranges
from minutes to hours. In social sciences, however, an agent-based approach is
most likely, space is often distributed into political units, and the time scale is
usually more coarse ranging from months to years.

In this paper, we focus on process-based models which simulate spatially
distributed processes and work on discrete time scales. We consider concur-
rently running simulation models which are dependent and exchange data at
runtime. In this context, we report on the development of a generic framework
for computer-based environmental modelling which has been constructed within
the project GLOWA-Danube, cf. [22, 26], which is part of a program on the con-
sequences of climate change set up by the German Ministry of Education and
Research. The framework is generic in the sense that it is, in principle, applicable
to any kind of model which supports distributed geographical units of arbitrary
size and arbitrary discrete time scales.

The development of the simulation framework has been guided by conceptual
and architectural requirements. Conceptually, we have identi�ed three major
issues. The framework should support:

1. Data exchange between concurrently running simulation models.
2. Consistent treatment of simulation space for all models.
3. Coordination of simulation models with respect to simulation time.

From the architectural perspective, two logical layers are required, a frame-

work core and a developer interface as indicated in Fig. 1. The framework core
comprises all features that can be handled by the framework itself like, e.g., build-
ing simulation con�gurations and coordination of simulation models. Hence, it
serves as a runtime environment for coupled simulations. The developer inter-
face is intended to facilitate the implementation of single simulation models. It
provides a programming interface, where particular elements exhibit so-called

1 Our notion of simulation time does not refer to real time but to the speci�c date for
which a simulation model actually computes data; e.g. the simulated temperature
at 5 p.m. on July 5th, 2035.



plug-points (in the sense of [7]), which have to be �lled with appropriate plug-ins
in order to obtain an executable system. The plug-ins are provided by concrete
simulation models, say M1, . . . , M4, as indicated in Fig. 1. Hence, the simula-
tion models instantiate the generic framework to a complete, coupled simulation
system. The framework core is transparent for the model developer. Thus the
developer of a simulation model is not concerned with administrative issues,
like, e.g. model linking. On the other hand, all simulation models must adjust
to general rules for common structure and behaviour which are implemented in
the framework.

Developer Interface

M1 M2 M3 M4

Developer Interface

M1 M2 M3 M4

Framework Core

Framework Core

Fig. 1. Framework layers

For the development of the framework we have applied a rigorous method-
ology based on di�erent functional views (or aspects) and on di�erent abstrac-
tion levels. The view-based approach supports separation of concerns which is
mandatory to understand the various tasks, in which an integrative simulation
framework is involved. In our context, we have identi�ed three views related to
the three requirements from above: data exchange, simulation space and simu-

lation time. These views are founded on a common base view which deals with
basic properties of integrative simulations. We propose three abstraction levels
for each view, dealing with requirements, with design and with the construction
of a component architecture. Finally, on the component level, the single system
views are integrated into an overall component model of the simulation frame-
work. Fig. 2 gives an overview of our methodology which shows that the base
view is extended on each abstraction level. As indicated in the picture, the dia-
grams must commute, i.e. extensions (denoted by ↪→ ) and re�nements (denoted
by  ) must be compatible with each other.

For the representation of each view we use the Uni�ed Modeling Language
UML [15] as a graphical notation and the Object Constraint Language OCL [27]
for specifying constraints. We have restricted the use of UML to an excerpt for
which we have de�ned re�nement relations between models on di�erent abstrac-
tion levels, extension relations between models on the same abstraction level as
well as a construction for model integration. We use structural models in the
form of class and component diagrams and behavioural models in the form of
sequence diagrams. For the most critical part of the framework, concerning the
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Fig. 2. View-based development

coordination of the simulation models w.r.t. simulation time, formal speci�ca-
tions in terms of the process algebra FSP [23] have been provided and the design
model (using a timecontroller) has been model checked against the coordination
requirements.

The framework implementation is systematically derived from the integrated
component model by a pattern transforming components into Java packages
which contain component managers to instantiate interfaces between compo-
nents. The framework has been implemented as a distributed system relying
on Java's Remote Method Invocation interface. Within the GLOWA-Danube
project, the framework has been successfully applied to construct the distributed
simulation system Danubia which integrates up to 15 simulation models from
various disciplines, like meteorology, hydrology, plant physiology, glaciology, econ-
omy, agriculture, tourism, and environmental psychology. Actually, Danubia is
already in use as a tool for decision makers to support the sustainable planning
of the future of water resources in the Upper Danube basin.

A number of other frameworks and interfaces supporting integrated environ-
mental modelling emerged since the GLOWA-Danube project started in 2001;
for an overview see [16]. There are, e.g., the Object Modelling System OMS [18],
ModCom [13], The Invisible Modelling Environment TIME [24], and the Open
Modelling Interface OpenMI [9]. While TIME is a platform for the development
of stand-alone modelling tools, OMS, ModCom, and OpenMI are frameworks
which support the independent development of models and allow for execution
of coupled simulations. In particular, OpenMI is designed to extend existing
stand-alone models by standard interfaces for data exchange. In contrast to our
approach, OpenMI allows only for sequential execution of dependent models.
OMS supports also parallel execution, as long as models are independent from
each other. ModCom and TIME are both not designed for distributed execution.
Distributed simulations of dependent models are supported by the High Level
Architecture HLA [6] which was set up in the nineties to de�ne a structural ba-
sis for simulation interoperability. A formal model for the architecture of HLA



has been provided in [2] on the basis of the architectural description language
Wright [1]. HLA provides a general purpose architecture while our approach is
tailored to environmental simulations �xing particular rules for this kind of ap-
plication. For instance, the life cycle and the coordination of simulation models
are already implemented in the framework core. As a consequence, the devel-
oper of a simulation model has only to implement the plug points provided by
our developer interface while in HLA a simulation model (called federate there)
must take care of calling the services of the HLA runtime infrastructure, e.g.
to publish state updates or to request advance of logical time, in accordance
with the type of simulation. Thus even real-time players can be integrated in
HLA architectures which was not the intention of our environmental modelling
approach.

After this introduction we proceed by illustrating in more detail the applica-
tion of our development methodology for (parts of) the base and the time view
of the simulation framework in Sects. 2 and 3. In Sect. 4 we describe brie�y the
requirements models for the data exchange and the simulation space view. We
do not consider in detail the component models of the single views, but we give
an overview of the �nal result of their integration in Sect. 5. Then we discuss
the application of our framework to obtain the Danubia simulation system in
Sect. 6 and we �nish with some concluding remarks in Sect. 7.

2 Base View Development

2.1 Base View Requirements

Requirements analysis concerns the identi�cation and modelling of concepts
which are crucial for the envisaged system. To model the concept of an inte-

grative simulation we use the class Simulation shown in Fig. 3. Any (integrative)
simulation has a (non-empty) set of participating simulation models represented
by instances of the class Model. We require that simulations and models can be
identi�ed by a unique simulationId and modelId, resp., expressed by the property
{key}, which is a shorthand notation for a corresponding OCL invariant de�ned
in an obvious way.

<<requirements>>
overview^basecd

−simulationId{key}

Simulation Model

−modelId{key}
−sim
1

−models

*

Fig. 3. Base view requirements: static model

Concerning basic dynamic behaviour of integrative simulations, the sequence
diagram in Fig. 4 shows a minimal set of actions that are expected, when an



integrative simulation is performed. By means of an appropriate user interface,
which is not in the scope of the simulation framework and therefore is modelled
as an actor, a Simulation object is created and started. Then instances of all
participating models must be created and executed (as indicated in the loop
fragment). When a model has �nished its simulation run the Simulation object
is noti�ed by the message �nished. If this noti�cation has arrived from all par-
ticipating models the end of the simulation is signalled to the UserInterface. All
messages in the sequence diagram are asynchronous (indicated by an open ar-
rowhead). Hence the single simulation models are executed in parallel after they
have been started within the loop. Obviously, the static and the dynamic model
are consistent, since all lifelines in the sequence diagram correspond to roles and
types of the static model.

sim:Simulation

loop

new()

new()
m:Model

finished()

finished()

sd executeSimulation^base

UserInterface

start()

run()

<<requirements>>

[forAll m in sim.models]

Fig. 4. Base view requirements: dynamic model

2.2 Base View Design

Design modelling concerns the development of solutions in order to realise the
abstract concepts. In our case we discriminate active entities for controlling and
descriptive objects that carry information. An overview of the structural design
model of the base view is depicted in Fig. 5.

The class Simulation of the requirements model is split into the two classes
SimulationAdmin and SimulationCon�guration. While a SimulationAdmin instance
is supposed to act as a management entity for an integrative simulation and is
therefore designed as an active class (indicated by a vertical double line on the



−sim

−models

−base

1

1

*

1

1

0..1
0..1

1

−mmd

0..1

−mmd

1
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0..1

*

−sc

1

−sc 0..1−sc 0..1

−modelId:String{key}

−modelClass:String

+isValid():Boolean{query}

+getModelId():String{query}

+getModelClass():String{query}
...

<<data type>>
ModelMetadata

+isValid():Boolean{query}

+getSimulationId():String{query}

+getParticipatingModels():ModelMetadata[*]{query}
...

AbstractModel

<<base class>>

−simulationId:String{key}

SimulationConfiguration
<<data type>>

SimulationAdmin

+start()
+finished()...

+run()
...

ModelCore

Model

−modelId{key}

<<requirements>>
overview^basecd

1

−simulationId{key}

Simulation

−sim

−models *

overview^basecd
<<design>>

Fig. 5. Base view design: static model

border of the UML class box), the class SimulationCon�guration holds descriptive
information about the simulation (indicated by the stereotype �data type�).

The requirement classModel has been split into the three design classesMod-
elCore, AbstractModel and ModelMetadata. While ModelMetadata is a class for
storing meta data of a simulation model, the classes ModelCore and Abstract-
Model represent a simulation model itself. This partition follows the framework
principle explained in Sect. 1: while ModelCore belongs to the framework core
(indicated by the dark colour) to implement the general life cycle of a simulation
model within the method run (and therefore is again an active class), the class
AbstractModel is part of the developer interface of the framework. It constitutes
a base class (depicted by the corresponding stereotype) for the development of
an individual simulation model by (object-oriented) extension. In contrast to the
requirements model, the static design model shows operations which are either
derived from the messages of the dynamic requirements model (see Fig. 4) or
identi�ed during the design phase, like isValid. The latter operation occurs in the
classes SimulationCon�guration and ModelMetadata, to determine the validity of
simulation con�gurations and the validity of model meta data resp. In each case
it is a query speci�ed by OCL pre- and postconditions as expected.

contex t S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . s i m u l a t i o n I d <> ""

and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n gMod e l s−>f o r A l l (m | m. i s V a l i d ( ) )

contex t ModelMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . mode l Id <> "" and s e l f . mode lC la s s <> ""



There is also a re�nement of the dynamic requirements model of Fig. 4 taking
into account the new classes, see Fig. 6. The sequence diagram depicts precondi-
tions that must be satis�ed before an object is created and postconditions that
must be valid after creation. It also contains a reference to a nested sequence
diagram not shown here.

sc:SimulationConfiguration

sim:SimulationAdmin

{post:self.simulationId=simId and

self.participatingModels=pModels}

new(simId, pModels)

new(sc)
{pre:sc.isVaild()}

sd executeSimulation^base

UserInterface

<<design>>

start()

finished()

{post: self.sc=sc}

runSimulation^base

ref

Fig. 6. Base view design: dynamic model

Re�nement rules. We have de�ned general rules for re�nement which allow
us to split requirement classes into sets of design classes and to rename and add
model elements and behaviours. The rules are de�ned for class diagrams and
sequence diagrams by taking into account their syntactic structure. Semantic
re�nement relations between sequence diagrams can be found, e.g., in [5], or in
the STAIRS approach [11, 10].

Structural model. A structural model SM 2 is a re�nement of a structural model
SM 1, denoted by SM 1  SM 2, if

� for each class A in SM 1 there exists a non-empty set CorA of corresponding
re�ning classes in SM 2,

� for each attribute of a class in SM 1 there is a corresponding attribute in one
of the re�ning classes of that class,

� for each association in SM 1 between two classes A and B there exists an
association in SM 2 between two classes in CorA and CorB resp. such that
multiplicities are respected, and



� for each invariant Inv occurring in SM 1 there exists an invariant Inv ′ in
SM 2 such that Inv ′ ⇒ Inv .

Dynamic model. Let SD1 and SD2 be sequence diagrams with corresponding
structural models SM 1 and SM 2 resp. such that SM 1  SM 2. Then SD2 is a
re�nement of SD1, denoted by SD1  SD2, if

� for each lifeline L in SD1 with type A ∈ SM 1 there is a non-empty set CorL
of corresponding lifelines in SD2 where the type of each L′ ∈ CorL is in
CorA , and

� for each interaction fragment in SD1 there is a corresponding interaction
fragment in SD2 such that the (partial) order of the interaction fragments
in SD1 is re�ected by the (partial) order of the corresponding interaction
fragments in SD2.

2.3 Base View Components

The goal of our component model is to group the classes, identi�ed in the struc-
tural design model, into components following the general principles of high
cohesion and low coupling. Components themselves are connected via (provided
and required) interfaces and they can be organised hierarchically. We say that
a component model is a re�nement of a design model if each class of the design
model occurs in one of the components and if each association of the design model
is either preserved, if the associated classes belong to the same component, or
otherwise, it is resolved by connections via interfaces. We use components solely
for structuring purposes; they are not instantiable and hence behaviours are
implemented by the classes inside a component. (In particular, this allows a
straightforward implementation in object-oriented languages.) Hence the tran-
sition from design to components concerns only the static aspects while the
dynamic model of the design remains still valid on the component level.

The UML component diagram in Figure 7 shows the component model for
the base view. We use two components, Simulation and Model, containing the
respective classes for simulations and for models occuring in the static design
model in Fig. 5. The associations between simulation and model classes and the
interactions between their instances have lead to the interfaces ModelAccess and
ExceptionHandler which are implemented (depicted by the ball notation) and
used (depicted by the socket notation) by the appropriate classes of the compo-
nents. (The multiplicity * indicates that at runtime arbitrary many instances of
model classes can interact with a simulation.) The interfaces SimulationAccess
and UserInterface show the open connections to the user interface not being part
of the framework.

3 Simulation Time and Coordination

A central role in integrative environmental simulations is played by the notion
of time and by the coordination of the simulation models. As already mentioned



<<component>>

<<component>>

cmp architecture^base
<<components>>

Simulation

Model

ModelAccess

SimulationAccess

+finished()
+error()

+setSimulationConfiguration(sc:SimulationConfiguration)
+start()

+setSimulationConfiguration(sc:SimulationConfiguration)
+run()

+setModelMetadata(mmd:ModelMetadata)

+exception()

ExceptionHandlerUserInterface

ModelAccess ExceptionHandler

SimulationAccess UserInterface

**

Fig. 7. Base view: component model

in the introduction, our notion of time expresses logical simulation time and
does not refer to execution time. In this section we show how the models of
the time view are constructed by extensions of the corresponding levels of the
base view. Fig. 8 gives an overview of the single extensions and re�nements to
be considered. The single steps are performed in the following order: Steps 1
and 2 concern the re�nement from requirements to design and from design to
components in the base case which have already been carried out in Sect. 2. In
step 3, the requirements model of the time view is constructed as an extension
of the requirements model of the base view. This requirements model is then
re�ned, in step 4, into a design model of the time view. This leads to the proof
obligation (*) that the resulting design model of the time view is an extension of
the design model of the base view, i.e. the lefthand diagram commutes. Finally,
in step 5, the design model of the time view is re�ned into a component model.
This leads to the proof obligation (**) that the resulting component model of
the time view is an extension of the component model of the base view, i.e. the
righthand diagram commutes.

In our approach extension relations are de�ned by precise (syntactic) rules on
the basis of an excerpt of the UML metamodel for class and sequence diagrams.
In principle, an extension relation is a particular case of a re�nement relation



such that renaming of model elements and splitting of classes and lifelines is not
allowed. For details see [21].
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time
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Fig. 8. Base and time view development

3.1 Time View Requirements

A simulation model simulates a (physical or social) process for a certain period
of time. In an integrative simulation all models must agree on a common time
period which is determined by the overall simulation2. Hence, the class Simulation
of the base view requirements in Fig. 3 is extended by two attributes storing the
begin and the end of a simulation. On the other hand, since we are considering
discrete time, each model has an individual time step, which is represented by
an additional attribute of the class Model shown in Fig. 9.

Model

−modelId{key}

−timeStep

<<requirements>>
cd

Simulation

−simulationId{key}

−begin

−end

−models−sim
1 *

overview^time

Fig. 9. Time view requirements: static model

Much more involved are the behavioural requirements concerning simulation
time and coordination. In contrast to stand-alone simulation models, a coupled
simulation model not only computes data, but has to perform activities concern-
ing data exchange in accordance with the simulation time. The general life cycle
a coupled simulation model must follow is described as follows.

2 For instance, in the GLOWA-Danube project the common simulation time spans
typically 50 years starting from the actual date.



� initialise model with basic data (e.g. about the simulation area)

� provide exported data at the model's export interfaces3

� while not at simulation end

• get data from the model's import interfaces

• compute new data for the next time step

• provide newly computed data at the model's export interfaces

� �nalise the simulation (e.g. closing of open �les or database connections)

This general life cycle of any simulation model is integrated into the sequence
diagram of the base view (Fig. 4) resulting in the sequence diagram for the dy-
namic time view requirements shown in Fig. 10, which is an obvious behavioural
extension of the former one.

provide(sim.begin)

getData(t)

compute(t+timeStep)

provide(t+timeStep)

sim:Simulation

loop

loop

new()

new()
m:Model

finished()

finished()

sd

UserInterface

start()

run()

<<requirements>>

init()

finalize()

executeSimulation^time

[forAll m in sim.models]

[for t=sim.begin .. sim.end step m.timeStep]

Fig. 10. Time view requirements: dynamic model

3 which is necessary for other models to start their computation



The sequence diagram in Fig. 10 models the parallel execution of all simula-
tion models participating in an integrative simulation. But it allows much more
(parallel) executions than desired since the single models are by no means coordi-
nated w.r.t. simulation time yet. For instance, Fig. 10 would allow an execution
where the �rst simulation model has already �nished its getData - compute -
provide loop, while some other model, whose exported data is needed by the
�rst one, has not even provided data yet or has only provided data which is
obsolete for the �rst model. Hence, we are faced with a non-trivial coordination
problem which cannot be speci�ed in UML. Our solution is to switch from the
UML requirements model to a formal speci�cation of the coordination problem.
For this purpose we use the process algebra FSP (Finite State Processes FSP)
introduced by Magee and Kramer [23] which allows us to formalise the coordi-
nation requirements in terms of so-called property processes4. Then we develop
an FSP design model and check that the design model satis�es the coordination
constraints. Finally, we move back to UML and obtain a UML design model
which is a re�nement of the original UML requirements model for the time view.
Our procedure is depicted in Fig. 11. We start with the speci�cation of the
coordination problem.

UML
Requirements Model

UML
Design Model

FSP
Requirements Spec.

FSP
Design Model

model checking

Fig. 11. From UML to FSP and back

The Coordination Problem. When several simulation models are executed in
parallel, it is essential that only valid data is exchanged, i.e. data that �ts to
the local model time of the participating models. To specify this requirement we
consider only two simulation models at a time, one, say U , acting as a user of
data, and the other one, say P , acting as a data provider. From the user's point
of view we obtain the coordination condition (U), from the provider's point of
view the coordination condition (P).

(U) U gets data expected to be valid at time tU only if the following holds:
The next data that P provides is valid at time tP with tU < tP .

(P) P provides data valid at time tP only if the following holds:
The next data that U gets is expected to be valid at time tU with tU ≥ tP .

Condition (U) ensures that the user does not get obsolete data while condi-
tion (P) guarantees that data, available at the provider's interface, will not be

4 An alternative formalisation of the coordination problem using purely mathematical
notations is given in [3].



overwritten if it is not yet considered by the user model. If one can show that
all (pairwise) combinations of all models participating in an integrative simula-
tion considered in both roles, as user and as provider of data, satisfy the two
coordination requirements, then the whole integrative simulation is coordinated
correctly.

To specify the coordination conditions, we �rst formalise the general life
cycle of a simulation model in terms of the following FSP process MODEL, which is
parameterised with respect to the model's time step. The actual simulation time,
when a certain action happens, is modelled by an action index. The sequence
of actions in line 5, getData[t] -> compute[t+Step] -> provide[t+Step], is
iteratively performed with increasing time t and thus formalises the inner loop
of the sequence diagram in Fig. 10. Let us remark that the computation of new
data for time t+Step relies on data obtained for time t. This time di�erence
avoids deadlocks of concurrently running models (in the case of feedback loops)
but it may also lead to imprecisions whose relevance must be analysed in concrete
cases and, if necessary, can be resolved by using smaller time steps.

1 range SimTime = SimSta r t . . SimEnd
2 MODEL( Step ) = ( run −> i n i t −> pro v i d e [ S imSta r t ] −> M[ S imSta r t ] ) ,
3 M[ t : SimTime ] =
4 i f ( t+Step <= SimEnd )
5 then ( getData [ t ] −> compute [ t+Step ] −> pro v i d e [ t+Step ]
6 −> M[ t+Step ] )
7 e l s e ( f i n a l i z e −> f i n i s h e d −> STOP) .

A particular simulation model with modelId m and time step sm is then for-
malised by the labelled FSP process [m]:MODEL(sm). In this process all actions
are pre�xed by the model identi�cator m, i.e. the actions are of the form [m].run,

[m].init, [m].provide[t], m.get[t] etc.
On this basis we can formalise the coordination conditions in terms of the

following FSP property process VALIDDATA. The �rst alternative of the pro-
cess VALIDDATA formalises condition (U) from above such that the index vari-
able nextUser corresponds to tU , nextProv corresponds to tP and therefore
nextProv-StepProv corresponds to lastP . The second alternative formalises
condition (P) from above.

1 p rope r t y VALIDDATA( User , StepUser , Prov , StepProv ) =
2 VD[ S imSta r t ] [ S imSta r t ] ,
3 VD[ nextGet : Time ] [ nextProv : Time ] =
4 (when ( nextGet<nextProv )
5 [ User ] . getData [ nextGet ] −> VD[ nextGet+StepUser ] [ nextProv ]
6 |when ( nextGet>=nextProv )
7 [ Prov ] . p r o v i d e [ nextProv ] −> VD[ nextGet ] [ nextProv+StepProv ] ) .

For a system of coupled simulation models all requirements concerning the
validity of data are now obtained by pairwise instantiations of the generic prop-
erty process VALIDDATA such that, in di�erent instantiations, the same simulation
model occurs once in the role of a user and once in the role of a provider of data.
To validate the property processes we have used the FSP-tool LTSA (Labelled



Transition System Analyser) which translates FSP processes into labelled tran-
sition systems and visualises the transition systems if the property process is
instantiated (by small parameters).

3.2 Time View Design

The formal speci�cation of the coordination requirements is highly non-construc-
tive. The basic idea of the formal design model is to introduce a global con-
trol process that coordinates appropriately all simulation models participating
in an integrative simulation. In [12] we have constructed an explicit coordi-
nation process with FSP, called TIMECONTROLLER, which has actions of the
form m.enterGet[t], m.exitGet[t], m.enterProv[t], m.exitProv[t] for
all model identi�cators m and time steps t within the range of the simulation
time. The enter actions are guarded by appropriate coordination conditions
like, in the case of three simulation models to be coordinated,

when ( t<nextProv1 & t<nextProv2 & t<nextProv3 )
[ 1 . . 3 ] . e n t e rGe t [ t ] −> . . .

| when ( nextGet1>=t & nextGet2>=t & nextGet3>=t )
[ 1 . . 3 ] . e n t e rP rov [ t ] −> . . .

The exit actions are not guarded but change the value of the nextGet and
nextProv variables accordingly.

Moreover, the FSP process MODEL of the requirements model is extended such
that any provide and get action is surrounded by appropriate enter and exit

actions which are shared with the timecontroller. Since shared actions can only
be executed together, the timecontroller process now monitors when a simulation
model can execute its get and provide actions in the parallel composition

([1]:MODEL(s1)||...||[n]:MODEL(sn)||TIMECONTROLLER)

We have veri�ed with LTSA that the FSP design model indeed satis�es the
coordination conditions formalised by (instantiations of) the property processes
of the FSP requirements model; see [12] for more details.

The formal FSP design model suggests a particular architecture of a design
model on the UML level which introduces the class Timecontroller shown in the
static UML design model in Fig. 12. Obviously, this model is a re�nement of
the static time view requirements model in Fig. 9 and also an extension of the
static base view design model in Fig. 5, as required by the proof obligation (*)
in Fig. 8.

During an integrative simulation run there is exactly one instance of the
class Timecontroller which acts as a monitor that must be called by the simu-
lation models (more precisely, by the ModelCore instances) before data delivery
and data access can be performed. This is pointed out in Fig. 13 which shows
an excerpt of the dynamic UML design model for the time view. In particular
one can see in Fig. 13 that any enter message called on the timecontroller is
equipped with an �enable� constraint which expresses a coordination condition



derived from the FSP guards in the timecontroller process. We have introduced
enable constraints, though not part of the OCL standard, to model situations
in which a calling object will be blocked if the condition is not valid and then
waits until the constraint becomes true. Let us remark that enable conditions
are methodologically (and also from the implementation point of view) quite dif-
ferent from OCL preconditions, since preconditions are expected to hold when
an operation is called. Indeed, when we use preconditions in our models, we ex-
press a requirement for the caller and our reference implementation will raise an
exception if the precondition is not satis�ed upon operation call. In contrast, if
an operation call is constrained by an enable condition, say cond, then the oper-
ation, say op, will be implemented in Java by a synchronized method applying
the following general pattern proposed in [23]:

public synchronized void op() throws InterruptedException {

while (!cond) wait();

... // monitor state = nextState

notifyAll();

}

If the condition cond is not satis�ed, the calling thread will be blocked by
wait. If the condition is satis�ed the thread may enter the critical region and
change the monitor state. After that it releases, if necessary, all waiting threads
by notifyAll. The while loop ensures that the condition is checked again after
a thread has been released which is necessary since Java follows the �signal and
continue� principle.

The sequence diagram in Fig. 13 shows also that, after a simulation model
has entered the monitor, the concrete execution of getting data and providing
data is delegated to an instance of the class AbstractModel and similarly for
computing new data. How the operations getData, provide and compute will
�nally be implemented is due to the developer of a concrete simulation model
who has to extend the abstract model class. Therefore getData, provide and
compute are declared as plug points in the class AbstractModel as indicated in
Fig. 12.

As already mentioned, Fig. 13 shows only an excerpt of the dynamic design
model for the time view. The full model is a hierarchically organised sequence
diagram presented in all details in [21]. It is a re�nement of the dynamic time
view requirements model in Fig. 10 and also an extension of the dynamic base
view design model in Fig. 6 (as required by the proof obligation (*) in Fig. 8).

3.3 Time View Components

The component model for the time view encapsulates the Timecontroller class in
the component TimeCoordination, which is connected to the two components of
the base view by appropriate interfaces, one to access the timecontroller monitor
from a model and the other one to pass a simulation con�guration from the
simulation administrator. This corresponds to the re�nement step 5 in Fig. 8.
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<<data type>>
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getData(t:Date)
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−end

−models *

−sim 1

overview^time

overview^time

Fig. 12. Time view design: static model



loop

models[id]:ModelCore base:AbstractModeltc:Timecontroller

finalize()

sd runModel^time(mmd:ModelMetadata, sc:SimulationConfiguration)
<<design>>

enterProv(modelId=id, t=sc.begin)

exitProv(modelId=id, t=sc.begin)

enterGet(modelId=id, t=self.currentModelTime)

exitGet(modelId=id, t=self.currentModelTime)

exitProv(modelId=id, t=self.currentModelTime)

enterProv(modelId=id, t=self.currentModelTime)

[currentModelTime.getNextDate(timeStep).isAfter(sc.end)]

{enable: self.nextGet−>forAll(d:Date|not d.isBefore(t))}

{post: self.nextProv[modelId]=t.getNextDate(timeStep)}

{enable: self.nextProv−>forAll(d|t.isBefore(d)}

{post: self.nextGet[modelId]=t.getNextDate(timeStep)}

{enable: self.nextGet−>forAll(d|not d.isBefore(t))}

{post: self.nsextProv[modelId]=t.getNextDate(timeStep)}

{post: self.currentModelTime=self.currentModelTime@pre.getNextdate(timeStep)}

{self.currentModelTime=sc.begin}

provide(t=self.currentModelTime)

incModelTime()

getData(t=self.currentModelTime)

compute(t=self.currentModelTime)

provide(t=self.currentModelTime)

init()

timeStep=mmd.timeStep
id=mmd.modelId

Fig. 13. Time view design: Excerpt of the dynamic model



Fig. 14 shows the component model of the time view. It extends the base view
component model in Fig. 7 by the component TimeCoordination and by the
two interfaces TimecontrollerMonitor and TimeCoordinationAccess together with
their associated relationships for usage and implementation. Hence, the proof
obligation (**) of Fig. 8 is satis�ed.

<<component>>

<<component>>

<<component>>

cmp
<<components>>

architecture^time

Simulation

Model

+exception()

ExceptionHandler +exitProv(modelId:String, t:Date)
+enterProv(modelId:String, t:Date)
+exitGet(modelId:String, t:Date)
+enterGet(modelId:String, t:Date)

TimecontrollerMonitor

TimeCoordinationAccess

+setSimulationConfiguration(sc:SimulationConfiguration)

ModelAccess

+setSimulationConfiguration(sc:SimulationConfiguration)
+run()

+setModelMetadata(mmd:ModelMetadata)

SimulationAccess

+setSimulationConfiguration(sc:SimulationConfiguration)
+start()

*

ExceptionHandler
TimeCoordination

+finished()
+error()

UserInterface

UserInterface

*

SimulationAccess

TimeCoordinationAccess

TimecontrollerMonitor
*

ModelAccess

Fig. 14. Time view: component model

4 Data Exchange and Simulation Space

This section gives a short overview on the remaining system views concerning
data exchange and simulation space. We only present the static requirements
models as extensions of the base view to get an idea of the relevant concepts in



these cases. For the complete development of the data exchange and simulation
space aspects we refer to [21].

4.1 Data Exchange: Requirements

In a coupled simulation, the single simulation models exchange data at runtime.
We require that for data exchange they use data interfaces. For each simulation
model the interfaces appear in two di�erent roles. First, a model must have a set
of export interfaces to provide computed data for other models. Secondly, a model
imports data that it needs for its own computations from other models. For this
purpose it uses import interfaces (which at the same time are export interfaces
of a providing model). Statically, we extend the requirements model of the base
view (cf. Fig. 3) by the type DataInterface associated with the conceptual class
Model by two directed associations, one for the exported and one for the imported
interfaces of a simulation model, as shown in Fig. 15. A concrete example of an
exported and imported interface of a groundwater simulation model is given
later when we illustrate the framework instantiation in Fig. 19.

DataInterface

*

Model

−modelId{key}

<<requirements>>
cd

−simulationId{key}

Simulation

overview^data

−sim −models
1 * imports

exports

*

Fig. 15. Data exchange requirements: static model

The class diagram in Fig. 15 is enhanced by a consistency condition for
integrative simulations which requires that for any model participating in a sim-
ulation and for each interface imported by the model there must exist exactly
one simulation model which exports that interface. The following OCL invariant
expresses this requirement.

contex t S imu l a t i o n i n v :
s e l f . models . f o r A l l (m |
m. import s−>f o r A l l ( i |

s e l f . models−>one ( n |
n . e xpo r t s−>i n c l u d e s ( i ) ) ) )

The dynamic requirements model for data exchange is a simple extension
of the basic one (Fig. 4), which integrates an activity to link models via their
corresponding import/export data interfaces.



4.2 Simulation Space: Requirements

Any environmental simulation model operates on some simulation space. For
integrative simulations we assume that all models use the same simulation space
which consists of a set of so-called proxels. The term proxel (cf. [25]) stems from
process pixel and suggests that a proxel does not only model a structural element
of the simulation space, but it shows also dynamic behaviour by simulating the
environmental processes on this particular geographical unit. The entire simu-
lation area is then modelled by a set of (non-overlapping) proxels. The spatial
requirements of an integrative simulation are described by the UML class dia-
gram in Fig. 16. It says that a simulation concerns always exactly one simulation
area which, in turn, consists of a set of proxels. The class Proxel requires that
each proxel has a unique identi�er pid and a number of properties which must be
common to all simulation models (like, e.g., geographical coordinates, elevation,
etc.). On the other hand, each simulation model has a set of proxels, on which
it operates. These proxels must belong to the simulation area of the simulation,
in which a model participates. This requirement is again expresses by an OCL
invariant not shown here. Obviously, the static requirements model in Fig. 16 is
an extension of the basic one in Fig. 3.

*

1

−proxels

1

SimulationArea

−area1

...

−pid {key}
−property1
−property2

Proxel−area −proxels

*1

−simulationId{key}

Simulation Model

−modelId{key}
−sim
1

−models

*
−sim

<<requirements>>
cd overview^space

Fig. 16. Simulation space requirements: static model

5 Integration

In the last step of our development methodology the component models of the
single views are integrated into an overall component model which is an exten-
sion of each view, as indicated in Fig. 17. Though we have not considered the
component levels of the data exchange and space views, we still want to give an
overview of the component architecture of the full simulation framework shown
in Fig. 18. One can see that it extends the time view component model of Fig. 14
by the componentModelLinking, which stems from the data exchange component



model, and by the two components Basedata and Proxel, both stemming from
the simulation space view. The latter has been introduced as a subcomponent of
the Model component. As indicated in the picture, all components are connected
via appropriate provided and required interfaces.

data space time

integration

req  des  cmp req  des  cmp req  des  cmp

cmp

Fig. 17. Integration
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<<component>><<component>> <<component>>

<<component>>

<<component>>

cmp
<<components>>

architecture^integration

Simulation

BasedataModelLinking TimeCoordination

Proxel

Model

*

SimulationAccess UserInterface

*

*

ExceptionHandler

BasedataAccess

*

LinkHandler

ModelLinkingAccess

*

TimeCoordinationAccess

TimecontrollerMonitor

ExceptionHandler

ModelAccess

BasedataQuery

Fig. 18. Integrated component model: Overview

Our integration follows a general integration procedure for static and dy-
namic models which produces a unique result up to renaming, similarly to a
push-out construction, and which is independent of the order of the integration
(up to renaming) in the case of more than two diagrams. For static models, our
procedure works on an excerpt of the UML metamodel for class and component



diagrams; it is widely adopted from the UML package merge construction as
explained, e.g., in [14].

But we have also to consider the integration of dynamic models in the form
of sequence diagrams, which we have used in the dynamic design models of each
view and which are still valid in the single component models. The task is to
describe how two sequence diagrams extending a common base sequence dia-
gram are integrated. For this purpose we have de�ned general rules which work
on an excerpt of the UML metamodel for sequence diagrams. An integrated se-
quence diagram comprises the lifelines, messages and interaction fragments of
its constituent parts. During the integration process the interaction fragments
of the base diagram act as synchronisation points whereas the other interaction
fragments of the extended diagrams can be arbitrarily interleaved. Hence, in
the integrated sequence diagram they are arranged, between the synchronisa-
tion points, in separate operands of the UML par construct to express parallel
executions. Our construction ensures that the partial order of interactions of
each single sequence diagram is preserved by the integration. In general, it may
however happen, that the resulting set of interaction fragments is not partially
ordered, i.e. the result is not necessarily a well-formed sequence diagram; cf. [17].
Thus our integration construction for dynamic models de�nes in fact a partial
function. Concerning our simulation framework the integration of the sequence
diagrams of the single views is rather involved and presented in detail in [21].

An integration process similar to ours, but without using a common base
de�ning the synchronisation points, is presented in [4]. The approach is based
on a categorical construction using labelled prime event structures [28]: the syn-
chronisation points of two sequence diagrams are calculated as a pull-back, and
the integration as a push-out.

Finally, let us still emphasise that all models of the simulation framework
are programming language independent. The integrated component model is,
however, su�ciently detailed such that it can be directly transformed into a
concrete implementation. We have constructed a reference implementation of
the framework in Java following a client/server architecture such that network
communication is performed by means of Java's Remote Method Invocation in-
terface RMI. Since Java does not support the concept of components we have
developed a transformation pattern such that UML components are mapped
to Java packages, each package containing a (public) manager class that is re-
sponsible for generating objects that implement the provided interfaces of the
components in accordance with the component model.

6 Application of the Framework

Within the GLOWA-Danube project [22, 26] our simulation framework has been
instantiated to construct the integrative simulation system Danubia which in-
tegrates up to 15 simulation models for natural processes (like hydrology, plant
physiology, groundwater, glaciology etc.) as well as socio-economic models. The
latter have been developed to model the behaviour of the involved actors in



the areas of agriculture, economy, water supply, private households, and tourism
based on the structure of societies and their interests. The ultimate purpose of
Danubia is to serve as a tool for decision makers from policy, economy, and ad-
ministration for the sustainable planning of water resources in the Upper Danube
basin under global change conditions. Danubia was validated with comprehen-
sive data sets of the years 1970 to 2005. It is actually in use to run and evaluate
coupled simulations which are driven by climatic as well as societal scenarios for
the next 50 years.

How a concrete simulation model is integrated into the framework is shown
in Fig. 19 in terms of a groundwater model. The upper layer indicates (part of)
the framework core and the middle layer (part of) the developer interface as
discussed in Sect. 1. One can see that all model classes (and interfaces) of the
groundwater model extend the base classes (the base interface DataInterface

resp.) of the developer interface by certain domain-speci�c properties, like the
proxel attributes gwWithdrawal, gwLevel etc., and by providing implementa-
tions for the plug-in operations like, e.g., compute and computeProxel. Thereby
the framework's core functionality concerning runtime coordination, manage-
ment tasks and the like is completely hidden from model developers.

<<base interface>>
DataInterface

<<base class>>
AbstractProxel

TimeController ModelCore ProxelTable

<<interface>>
WatersupplyToGroundwater
getGroundwaterWithdrawal():
WaterFluxTable

getGroundwaterLevel():LengthTable
getInExFiltration():WaterFluxTable

GroundwaterToWatersupply
<<interface>>

Groundwater GroundwaterProxel

gwWithdrawal:Real
gwLevel:Real
inExFiltration:Real

<<plug−in>>computeProxel()...

...

<<base class>>
AbstractModel

timestep:TimeStep...

<<plug−point>> getData(t:Date)
<<plug−point>>
<<plug−point>>
<<query>>

compute(t:Date)
provide(t:Date)

proxel(pid:Integer):
AbstractProxel

...

name:String

1 *

1 11*

getGroundwaterLevel()
...

<<plug−in>>provide(t:Date)
<<plug−in>>compute(t:Date)
<<plug−in>>getData(t:Date)

...

northing:Real
easting:Real
area:Real

...
<<plug−point>> computeProxel()
<<query>> getPid():Integer
<<query>> getElevation():Real...

elevation:Real
id:Integer

name = groundwater
timestep = DAY

...

Framework Core

1

1 1

*

<<extends>><<extends>><<extends>>

<<extends>>

Groundwater Model

Developer Interface

Fig. 19. Instantiation of the framework

While the framework is primarily intended for the development of new sim-
ulation models, legacy models can yet be integrated into the framework as long
as their computation steps are controllable from the outside. In this case the



legacy model is surrounded by a wrapper which must implement the (plug-in)
operations like any other model. The concrete computation steps of the legacy
model can then be initiated by using the Java Native Interface.

Of course, the performace of a coupled simulation run depends strongly on
the number and type of the participating simulation models. For instance, a sim-
ulation that couples only socio-economic models (together with a groundwater
model needed to interact with the water supplier model) runs actually between
three and four days for a simulation period of 50 years. In this case the smallest
local time step is one day. If, however, all 15 models participate in a simulation
run, then for the same simulation period of 50 years the simulation execution
takes approximately 70 days. Hence, performance is still an issue and the obvi-
ous approach to improve e�ciency would be to �gure out further parallelisation
possibilities which may concern the framework as well as the implementations
of the single simulation models. For instance, the coordination could be made
more liberal if in addition to the local time steps individual dependencies and
independencies of simulation models would be taken into account. The models
themselves may also identify further parallelisable parts, though we have already
provided templates for parallel computations of di�erent proxels.

7 Conclusion

We have described the development of a generic framework for integrative envi-
ronmental modelling and simulation. The framework supports the development
and the coupling of simulation models from various disciplines. It allows us to
construct in a �exible way networks of distributed, dependent simulation models
which are concurrently executed. The framework has been successfully applied
to construct the integrative simulation system Danubia which integrates 15
simulation models for natural and socio-economic processes.

For the development of the framework we have investigated a view-based
methodology which, we believe, can be useful for the development of other com-
plex software systems as well under the following assumptions: First, a partition
of the functionality into several prominent views must be meaningful, secondly it
should be possible to identify a common base view such that the other views are
othogonal extensions of the base, and, for applying our re�nement and extension
relations, the static, dynamic and component models must conform to the ex-
cerpt of the UML metamodel used in our approach. Actually, we are looking for
further case studies to apply our methodology which �nally should be supported
by tools for various tasks. For instance, to manage views, check re�nements and
extensions, and to compute integrations and reference implementations.

We have applied formal speci�cation techniques to specify and check the
temporal coordination being the heart of integrative simulations with dependable
models. We are not aware of any other system of comparable complexity which
has been completely modelled and speci�ed in such a rigorous manner up to the
last step, in which a full, implementation language independent model of the
whole system is constructed. The models and speci�cations serve at the same



time as a complete documentation for maintenance, furher developments and
adaptations of the framework. The framework as well as the simulation models
developed in the GLOWA-Danube project have been published under the name
OpenDanubia under an Open Source Licence. Thus the framework is accessible
for model developers for instantiation and also for framework developers, who
may want to add further features (e.g., to support dynamic changes of simulation
con�gurations). More information about OpenDanubia and a comprehensive
list of publications discussing the application of the framework for particular
scenarions and simulation results from various perspectives can be found at the
GLOWA-Danube web page [26].
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