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Abstract

We present a compositional approach for specifying concurrent behavior of components with data states
on the basis of interface theories. The dynamic aspects of a system are specified by modal input/output
automata, whereas changing data states are specified by pre- and postconditions. The combination of the
two formalisms leads to our notion of modal input/output automata with data constraints (MIODs). In
this setting we study refinement and behavioral compatibility of MIODs. We show that compatibility is
preserved by refinement and that refinement is compositional w.r.t. synchronous composition, thus satisfying
basic requirements of an interface theory. We propose a semantic foundation of interface specifications where
any MIOD is equipped with a model-theoretic semantics describing the class of its correct implementation
models. Implementation models are formalized in terms of guarded input/output transition systems and
the correctness notion is based on a simulation relation between an MIOD and an implementation model
which relates not only abstract and concrete control states but also (abstract) data constraints and concrete
data states. We show that our approach is compositional in the sense that locally correct implementa-
tion models of compatible MIODs compose to globally correct implementations, thus ensuring independent
implementability.

Keywords: component-based design, interface theory, modal input/output automata, pre- and
postcondition, compositionality, refinement, compatibility

1. Introduction

Component-based software development has emerged as an important subdiscipline of software engi-
neering. Software components represent functional units which collaborate with other components and
their environment via interfaces. These interfaces usually distinguish between the required and provided
operations of a component and, moreover, specify the observable behavior of components [12].

In a sequential environment the observable behavior is purely functional and can be adequately described
by pre- and postconditions. In a concurrent environment the behavior is also determined by the component
interactions. Most current work on interface specifications abstracts from the functional data requirements
and focuses on the interaction behavior. E.g. Jan Bergstra and C. A. Middelburg propose so-called interface
groups for studying the composition of interacting process components in the setting of process algebra [7].
We claim that the combination of interactions with functional behavior is far from being well understood.
For instance, it is well-known that pre/postcondition style specifications do, in general, not work for systems
of concurrent components, but we believe that it is still important to investigate how far one can go by using
them in a concurrent environment. More specifically, this concerns the impact of integrated control flow
and data flow on specifications, implementations, formal correctness and compatibility notions, composition,
and, last not least, independent implementability.
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Figure 1: A modal input/output automata T and possible refinements S1 and S2.

In this work we propose an interface theory on the basis of modal input/output automata (MIOs) intro-
duced in [20]. A particular advantage of modal transition systems is that they distinguish between “may”
and “must” transitions which leads to a powerful refinement notion [22]: the may transitions determine which
actions are permitted in a refinement while the must transitions specify which actions must be present in a
refinement and hence in any implementation. In this way it is possible to provide abstract, loose specifica-
tions in terms of may transitions and to fix in a stepwise way the must transitions until an implementation,
represented by an MIO with must transitions only, is reached. Another aspect which can be conveniently
formalized with modal input/output automata concerns the compatibility of interacting components: when-
ever an interface specification allows that a message may be issued, then the communication partner should
be in a (control) state where it must be able to accept the message [20, 4].

Fig. 1 shows an example for MIO refinements. The MIO T provides a loose specification with two must
transitions, drawn with solid arrows, and one may transition, drawn with a dashed arrow. The specification
says that in the initial state, and whenever this state is reached again, any refinement of T must be able
to input a?. Then there is a choice between a must transition for the output b! and a may transition for
the output c!. The “may” modality expresses that this transition is not mandatory for refinements and can
be omitted or can be turned into a must transition as done in the refinement S1 of T . Another possible
refinement of T is given by the MIO S2 which non-deterministically decides whether to switch to a mode
where after each input a? the only output is b! or to a mode where an output c! is possible once.

In our approach we extend MIOs by taking into account the specification of data constraints which
enhance transitions with pre- and postconditions describing the admissible data states of a component before
and after the execution of an operation. We distinguish, like in MIOs, between input, output and internal
actions and, additionally, between provided, required and internal state variables. Provided and internal
state variables are local to a component and describe the data states a component can adopt. In contrast to
the internal state variables, provided state variables are visible to the user of a component. Required state
variables belong also to the interface specification of a component, however, they are not related to the data
states of the component itself but to the data states the component can observe in its environment. On this
basis we study (synchronous) composition, refinement and compatibility of modal input/output automata
with data constraints (MIODs). In addition to relationships between control states, we take special care
of the relationships between data constraints in all these cases. For instance, considering compatibility,
the condition concerning control flow compatibility is extended to take into account data states: the caller
of an operation must ensure that the precondition of the operation provided by the callee is satisfied and,
conversely, the callee must guarantee that after the execution of the operation the postcondition expected by
the caller holds. Thus, the compatibility notion takes into account the mutual assumptions and guarantees
of communicating components guided by the idea that specifications provide contracts which must match
when components are composed. We show that MIODs satisfy the basic requirements of an interface theory:
compatibility is preserved by refinement and refinement is preserved by synchronous composition of MIODs.

So far MIODs have been introduced in [2] as a specification formalism for concurrent, reactive components
with encapsulated data states. We believe, however, that any specification S should be equipped with a
formal semantics JSK which unambiguously defines the meaning of the specification, for instance for analysis
and further reasoning. This is particularly important in our context due to the many subtleties which

2



IM
f //

i
��

IMd

j
��

IP(Mmust) g
// IP(G)

Figure 2: Interface theory morphisms.

arise when considering concurrently running components whose interactions have an effect on their data
states. Since specifications are inherently loose, leaving freedom to design decisions in implementations,
we will follow the loose semantics approach which, in the spirit of Hoare [18], considers the semantics
of a specification as the class of all its correct implementations. In such a framework one gets for free
notions like consistency, semantic equivalence of specifications etc. We take up this idea and propose a strict
separation of specifications (MIODs) and implementations which are given by labeled I/O-transition systems
whose states consist of a control part and of a concrete data state (formalized by an assignment of values
to state variables). The labels of an implementation model represent concrete operation invocations with
particular actual parameters and the transitions represent (atomic) executions of operations. Implementation
models are called guarded input/output transition systems (GIOs) since all actions (sending, receiving
of operation invocations and internal actions) can be guarded by concrete data states. Guards express
conditions on the component’s local data states and on the data states observable in the environment. An
implementation model (given as a GIO) is correct w.r.t. a given MIOD if there exists a simulation relation
between the two which relates control states and concrete data states of the model with control states and
data constraints (i.e. pre/postconditions) of the MIOD. Then the semantics of a MIOD is given by the
class of its correct implementations. Analogously to specifications, we define compatibility and synchronous
composition of implementation models (GIOs) and show that our semantics is compositional and preserves
compatibility. This means, that implementation models which are locally correct w.r.t. compatible MIODs
are compatible as well and compose to a correct implementation model of the MIOD composition. As
a consequence, our framework supports independent implementability of MIODs and substitutability of
correct implementations.

Thus we get not only the syntax-directed interface theories IM for MIOs and IMd
for MIODs but also

an interface theory IP(G) whose objects are classes of GIOs and where refinement is model class inclusion.
We relate the various interface theories in terms of so-called interface theory morphisms, see Fig. 2. For
instance, there is a morphism f between the interface theory IM of MIOs and the interface theory IMd

of MIODs which embeds modal input/output automata into MIODs (with trivial data constraints) such
that composition, refinement and compatibility are preserved. We also show that the semantic function j
associating the class of correct implementations to an MIOD is a (weak) interface theory morphism. This
means, in particular, that refinement of MIODs expresses model class inclusion on the semantic level. A
similar construction can be performed for the semantics of MIOs where implementations are MIOs as well
but with must transitions only, see [21]. Then the semantic function i associating the class of correct
implementations to an MIO is also a (weak) interface theory morphism. Finally, MIO implementations
can be embedded into implementation models of MIODs by the interface theory morphism g such that the
diagram in Fig. 2 commutes.

Related Work. Specifications of interaction behavior and of changing data states are often consid-
ered separately from each other. Complex interaction behavior can be well specified by process algebraic
approaches [7, 24]; transition systems in form of sequence diagrams (see e.g. [9]) or basic message se-
quence charts (see e.g. [17]) are popular formalisms to specify the temporal ordering of messages, and
pre/postconditions are commonly used to specify the effects of operations w.r.t. data states. Though ap-
proaches like CSP-OZ [15] or Circus [27, 30] offer means to specify interaction and data aspects, however
they do not support modalities expressing allowed and required behavior. Other related approaches are
based on symbolic transition systems (STS) [14, 1] but STS are mainly focussing on model checking and
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not on interface theories supporting the (top down) development of concurrent systems by refinement. Most
closely related to the concept of MIODs is the study of Mouelhi et al. [25] who consider an extension of
the theory of interface automata [12] to data states. However, their approach does not take into account
modal refinements and the contract principle between interface specifications which, in our case, is based
on a careful and methodologically important separation of provided, internal and required state variables.
Sociable interfaces [10] are another extension of interface automata which take into account data states
in a similar way, however, they do not consider modalities for transitions. In our previous work, we have
introduced MIODs in [2] which are further refined here and equipped with a formal semantics such that
it is possible to relate specification refinement with semantic model class inclusion as sketched above. Our
semantics is based on the ideas presented in [3] for behavior protocols (without modalities and without spec-
ification refinement). Existing work on modal transition systems and their use as specification formalism
for component interfaces [20, 26] does not take into account explicit data states.

Personal note. In the beginning of the eighties Jan and MW (the third author of this paper) were
both working on the idea to use algebraic methods for providing a sound theoretical basis to program
construction. At that time Jan was starting the process algebra approach (with W. Klop) for formalizing
the behavior of concurrent systems and was studying the computability of abstract data types (together with
John Tucker) whereas MW (together with Manfred Broy) was developing the theory of hierarchical data
types. By discussing our different approaches we came up with our (unique) common paper on the expressive
power of algebraic specifications [6] in which we were able to characterize the expressivity of hierarchical
and partial abstract data types. Then the common involvement in the EU project METEOR allowed us
to continue this research on algebraic methods for several years in order to ”provide techniques for data
abstraction and the structured specification, validation and analysis of data structures” as we wrote together
in the editorial of the LNCS volume 394 [29] on ”Algebraic methods: Theory, Tools and Applications.” It
is pleasure to see that 30 years later algebraic techniques are still a cornerstone of formal software analysis;
indeed, good (complementary) examples are Jan’s new process algebraic theory of interface groups [7] and
the interface theory approach of this paper for specifying and analyzing the behavior of interacting process
components.

Outline. The paper is organized as follows. In Sect. 2 we consider the basic notions of an interface
theory and interface theory morphism. The particular interface theory of MIOs with modal refinement and
strong modal compatibility is recalled in Sect. 3. In Sect. 4 we introduce modal input/output automata with
data constraints (MIODs). In Sect. 5 the semantics of MIODs is defined in terms of guarded input/output
transition systems. In Sect. 6, Sect. 7 and Sect. 8, we define refinement, composition and compatibility of
MIODs and GIOs, respectively. We show that refinement, composition and compatibility on the level of
MIODs are sound with respect to their semantics formalized in terms of GIOs. Then, in Sect. 9, we relate
the obtained interface theories for MIODs and GIOs by appropriate interface theory morphisms. In Sect. 10
we finish with some concluding remarks.

2. Interface Theories

A formal notion of an interface theory was, to our knowledge, first proposed by de Alfaro and Henzinger
in [12]. In their work, an interface theory consists of an interface algebra together with a component algebra
thus distinguishing between interface specifications and component implementations. Later, in [13], the
authors have introduced the term interface language which simplifies the approach by considering just inter-
faces with the requirements that incremental design and independent implementability is possible. Interface
theory and interface language are abstract concepts which can be instantiated by concrete formalisms. The
(abstract) notion of an interface theory we shall use hereafter is close to an interface language but further
simplified by concentrating on the rudimentary requirement of independent implementability. We deviate
from [13] that we do not require incremental design to hold which is, in general, not satisfied in interface
theories with a pessimistic compatibility notion, like the compatibility notion developed in this paper; cf.
[11] for a discussion on optimistic and pessimistic approaches to compatibility.

In our study interface theories are required to define a class of interface specifications (or shortly spec-
ifications), together with their composition, refinement and compatibility which are key concepts for any
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interface specification formalism. The composition operator allows to form larger specifications from smaller
ones, refinement relates “concrete” and “abstract” specifications, and compatibility expresses that two spec-
ifications work properly together.

Definition 1 (Interface Theory). An interface theory is a tuple (A,⊗,≤,�) consisting of a class A of
interface specifications, a partial composition operator ⊗ : A×A → A, a reflexive and transitive refinement
relation ≤ ⊆ A×A, and a symmetric compatibility relation � ⊆ A×A, such that the following conditions
are satisfied. Let S, S′, T, T ′ ∈ A be specifications.

(1) Compatibility implies composability

If S � T then S ⊗ T is defined.

(2) Compositional refinement

If S′ ≤ S and T ′ ≤ T and S ⊗ T is defined,
then S′ ⊗ T ′ is defined and S′ ⊗ T ′ ≤ S ⊗ T .

(3) Preservation of compatibility

If S � T and S′ ≤ S and T ′ ≤ T , then S′ � T ′.

In our notion of an interface theory, independent implementability of [13] is split into the conditions (2)
and (3) in order to clearly identify the basic requirements of an interface theory. Condition (1) is required
from an intuitive point of view since compatibility is only meaningful for interface specifications which can
actually be composed.

An interface theory can be considered as an algebraic structure (cf. [28]). An interface theory morphism,
similar to an algebraic homomorphism between algebraic structures, is a function between two interface
theories preserving the composition operator and the refinement and compatibility relation.

Definition 2 (Interface Theory Morphism). Let I = (A,⊗,≤,�) and I ′ = (A′,⊗′,≤′,�′) be two
interface theories. An interface theory morphism from I to I ′ is a function f : A → A′ such that, for all
A,B ∈ A,

1. f(A)⊗′ f(B) = f(A⊗B),

2. if A ≤ B then f(A) ≤′ f(B),

3. if A� B then f(A) �′ f(B).

If condition 1 is replaced by

1′. f(A)⊗′ f(B)′ ≤ f(A⊗B),

then f is called a weak interface theory morphism.

Establishing an interface theory morphism i from I to I ′ demonstrates that I ′ is at least as expressive as
I. The weak interface theory morphism is mainly motivated by the fact that the modal composition operator
for modal transition systems is not complete w.r.t. implementation semantics. This will be discussed in the
next section.
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3. An Interface Theory for Modal Input/Output Automata

In this section, we give a short introduction to modal input/output automata (MIOs) and summa-
rize previous work on their use as underlying specification domain in interface theories. In particular, we
will consider implementation semantics of MIOs and define a weak interface theory morphism between an
interface theory based on MIOs and an interface theory formed by their implementation classes (where
implementations are MIOs with must transitions only). For a survey

Modal transition systems were introduced by Larsen and Thomsen in [22] as a general way of loosely
specifying reactive, concurrent processes. Almost 20 years later, in [20], MIOs were proposed as a suitable
interface language with composition and compatibility notions targeted on reasoning about component
interfaces. MIOs distinguish between “may” and “must” transitions, where the former can be disregarded
and the latter must be respected by refinements. MIOs specialize modal transition systems [22, 19] by the
explicit discrimination of input, output and internal actions. An action set is a set Act of actions which is
partitioned into disjoint sets of input, output and internal actions.

Definition 3 (MIO [20]). A modal input/output automata (MIO)

S = (Act ,St , init ,∆may,∆must)

consists of an action set Act = Act in ] Actout ] Act int with pairwise disjoint sets Act in , Actout , Act int

of input, output, and internal actions resp., a set of states St , an initial state init ∈ St , a may transition
relation ∆may ⊆ St ×Act × St , and a must transition relation ∆must ⊆ ∆may.

The condition ∆must ⊆ ∆may is called syntactic consistency. A state s ∈ St of a MIO S is called reachable
if there exist may transitions (s0, a0, s1), (s1, a1, s2), . . . , (sn−1, an−1, sn) ∈ ∆may, n ≥ 0, such that s0 = init
and sn = s. The set of the reachable states of S is denoted by R(S). An MIO satisfying ∆must = ∆may is
called an implementation. The class of all MIOs is denoted by M, and the class of all implementations is
denoted byMmust. In the following, given an MIO S, we will use subscripts to refer to the single constituent
parts of S, e.g. StS means the set of states of S.

The basic idea of modal refinement is that any required (must) transition in the abstract specification
must also occur in the concrete specification. Conversely, any allowed (may) transition in the concrete
specification must be allowed by the abstract specification. Moreover, in both cases the target states must
conform to each other. Modal refinement has the following consequences: A concrete specification may
leave out allowed transitions, but is required to keep all must transitions, and moreover, it is not allowed to
perform more transitions than the abstract specification admits.

Definition 4 (Modal Refinement [22]). Let S and T be MIOs with the same action set Act . A binary
relation R ⊆ StS × StT is a modal refinement between the states of S and T iff for all (s, t) ∈ R and all
a ∈ Act it holds that

1. whenever (t, a, t′) ∈ ∆must
T then there exists s′ ∈ StS such that (s, a, s′) ∈ ∆must

S and (s′, t′) ∈ R,

2. whenever (s, a, s′) ∈ ∆may
S then there exists t′ ∈ StT such that (t, a, t′) ∈ ∆may

T and (s′, t′) ∈ R.

A state s ∈ StS refines a state t ∈ StT , written s ≤m t, iff there exists a modal refinement between the
states of S and T which contains (s, t). S is a modal refinement of T , written S ≤m T , iff initS ≤m initT .

It can be easily verified that ≤m is a preorder, i.e. that ≤m is reflexive and transitive. If both S and
T are implementations, i.e. if the must transition relation coincides with the may transition relation, then
modal refinement coincides with (strong) bisimulation; if ∆must

T = ∅ then it corresponds to simulation [23].
The implementation semantics of a MIO T , denoted by JT K, consists of all modal refinements of T which

are implementations (and therefore cannot be refined further, up to bisimulation). Thus, the implementation
semantics of a MIO T ∈ M is given by JT K = {I ∈ Mmust | I ≤m T}. It easily follows from transitivity of
≤m that refinement of MIOs implies inclusion of implementation classes.
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Proposition 1. For all S, T ∈M, if S ≤m T then JSK ⊆ JT K.

It is well-known [21] that modal refinement is incomplete meaning that the converse of Proposition 1 is
not true in general: there exist specifications S and T such that JSK ⊆ JT K but S 6≤m T ; a counterexample
can be found, e.g., in [21]. Note that deterministic MIOs are complete [5].

MIOs can be composed to specify the behavior of concurrent systems of several interacting components.
The composition operator synchronizes on shared actions yielding an internal action in the composition [20].
First, we need some syntactic restrictions under which two MIOs are composable. We require that overlap-
ping of actions only happens on complementary types.

Definition 5 (Composability [20]). Two action sets ActS , ActT are composable if

ActS ∩ActT = (Act in
S ∩Actout

T ) ] (Actout
S ∩Act in

T ).

Two MIOs S and T are composable if their action sets are composable.

Definition 6 (Composition of Action Sets [20]). Let ActS and ActT be two composable action sets.
Then their composition ActS ⊗ActT is defined by

(ActS ⊗ActT )in = (Act in
S ]Act in

T ) \ (ActS ∩ActT ),
(ActS ⊗ActT )out = (Actout

S ]Actout
T ) \ (ActS ∩ActT ),

(ActS ⊗ActT )int = Act int
S ]Act int

T ] (ActS ∩ActT ).

The (synchronous) parallel composition operator ⊗ is defined for composable MIOs in a straightforward
way by synchronization on shared actions.

Definition 7 (Composition of MIOs [20]). The composition of two composable MIOs S and T is given
by the MIO

S ⊗ T = (ActS ⊗ActT ,StS × StT , (initS , initT ),∆may
S⊗T ,∆

must
S⊗T )

where the transition relations ∆may
S⊗T and ∆must

S⊗T are generated by the following rules:

(s, a, s′) ∈ ∆γ
S (t, a, t′) ∈ ∆γ

T

((s, t), a, (s′, t′)) ∈ ∆γ
S⊗T

for a ∈ (ActS ∩ActT ), γ ∈ {may,must}

(s, a, s′) ∈ ∆γ
S t ∈ StT

((s, t), a, (s′, t)) ∈ ∆γ
S⊗T

(t, a, t′) ∈ ∆γ
T s ∈ StS

((s, t), a, (s, t′)) ∈ ∆γ
S⊗T

for a 6∈ (ActS ∩ActT ), γ ∈ {may,must}

During composition of two composable MIOs a behavioral mismatch may occur if one of the two MIOs
wants to send out a shared message which the other one cannot receive in its current state. The notion of
strong modal compatibility rules out such erroneous situations. Two MIOs S and T are strongly modally
compatible, denoted by S � T , if they are composable and if for each reachable state (s, t) in the composition
S ⊗ T , if S may send out in state s an action shared with T , then T must be able to receive it in state
t, and conversely. The difference to [13] and [20] is that we consider the “pessimistic” case, where MIOs
should work properly together in any composable environment while the “optimistic” approach, pursued in
[13] and [20], requires the existence of a (helpful) environment; for a discussion see [11].

Definition 8 (Strong Modal Compatibility [4]). Two composable MIOs S and T are strongly modally
compatible, denoted by S � T , iff for all reachable states (s, t) ∈ R(S ⊗ T ),

1. for all a ∈ (Actout
S ∩Act in

T ), if (s, a, s′) ∈ ∆may
S then there exists t′ ∈ StT such that (t, a, t′) ∈ ∆must

T ,

2. for all a ∈ (Actout
T ∩Act in

S ), if (t, a, t′) ∈ ∆may
T then there exists s′ ∈ StS such that (s, a, s′) ∈ ∆must

S .

In [4], we have shown that MIOs, together with the synchronous composition operator ⊗, modal refine-
ment ≤m and strong modal compatibility � satisfy all requirements of an interface theory, in particular
compositional refinement and preservation of compatibility.
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Theorem 2 ([4]). IM = (M,⊗,≤m,�) is an interface theory.

Finally, we can define an interface theory IP(Mmust) where the objects are classes of implementations.

Let P(Mmust) denote the powerclass of the classMmust. Let ⊗̂ and �̂ be the pointwise extensions of ⊗ and
�, respectively, to classes of MIOs inMmust, i.e. for M,N ∈P(Mmust), M⊗̂N = {S⊗T | S ∈M,T ∈ N},
and similarly, M�̂N iff S � T for all S ∈ M and all T ∈ N . The proof of the compositional refinement
and preservation of compatibility is trivial since refinement is just inclusion.

Theorem 3. IP(Mmust) = (P(Mmust), ⊗̂,⊆, �̂) is an interface theory.

The interface theory IM and the interface theory IP(Mmust) can be related by a weak interface theory
morphism i mapping any S ∈ M to its implementation semantics JSK ⊆ Mmust (i.e. the class of all its
correct implementations).

Theorem 4. The mapping

i : M → P(Mmust)

S 7→ JSK

is a weak interface theory morphism from IM to IP(Mmust).

Proof. We have to prove all three conditions of a weak interface theory morphism. Condition 1’, that
is JSK⊗̂JT K ⊆ JS ⊗ T K, follows from Theorem 2 since compositionality holds for all MIOs. Condition 2 is
Proposition 1. Condition 3 follows again from Theorem 2.

It is not an interface theory morphism (in the strong sense) since, in general, JSK⊗̂JT K  JS ⊗ T K. This
can be easily seen in the following example. Consider the MIOs S and T in Fig. 3, with ActS∩ActT = ∅, and
their composition S⊗T . Obviously, the implementation I in Fig. 3(d) refines S⊗T and hence I ∈ JS⊗T K.
But I is not in JSK⊗̂JT K since I cannot be obtained by composition of some implementation of S and some
implementation of T .

s0 s1
a

(a) S

t0 t1
b

(b) T

(s0, t0)

(s1, t0)

(s0, t1)

(s1, t1)

a

b

b

a

(c) S ⊗ T

i0

i1

i2

a

b

(d) I

Figure 3: I ∈ JS ⊗ T K, but I /∈ JSK⊗̂JT K.

4. Modal Input/Output Automata with Data Constraints

In this section we extend MIOs to take into account interface specifications for components with encapsu-
lated data states. For this purpose, we enrich the labels on transitions by pre- and postconditions to specify
the evolution of data states caused by the execution of actions. We will introduce Modal Input/Output au-
tomata with Data constraints (MIODs) and study their composition, refinement and compatibility guided
by the idea that specifications – in particular, pre- and postconditions – represent contracts describing as-
sumptions and guarantees. A simplified approach to MIODs has been introduced in [2]. This approach is
generalized here by considering labels with more general types of guards and by considering more general
refinement and compatibility notions allowing case distinctions on data states.

To define the transition labels used hereafter we proceed in several steps. First, we enhance the concept
of an action by introducing operations with parameters. Then we introduce various kinds of state variables
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which together with operations are used to build I/O-signatures. State variables are also the basis for
modeling concrete data states and for constructing state and transition predicates which will appear as pre-
and postconditions on the transitions of MIODs.

In the following we assume given two disjoint global sets LV of logical variables and SV of state variables.
We also assume a predefined data universe U .

Operations. Instead of actions, we consider operations op which may have a (possibly empty) set of formal
parameters par(op) ⊆ LV treated as logical variables. An I/O-operation signature O = Oprov ]Oreq ]Oint

consists of pairwise disjoint sets Oprov of provided operations (for inputs), Oreq of required operations (for
outputs), and Oint of internal operations. Provided operations are offered by a component and can be
invoked by the environment; required operations are required from the environment and can be called by
the component. To indicate that op ∈ Oprov (Oreq , Oint) we often write op? (op!, op;).

State variables. In order to model data states and to equip operations with pre- and postconditions we use
state variables of different kinds, which all belong to the given global set SV of state variables. Provided
state variables describe the externally visible data states, while internal state variables describe the hidden
data states of a component. Provided and internal state variables together model the local data states a
component can adopt. There is, however, still a third kind of state variable which we call required state
variable. Required state variables are used to refer to the data states a component expects to be visible in
its environment. Formally, an I/O-state signature V = V prov ] V req ] V int consists of pairwise disjoint sets
V prov , V req , and V int of provided, required and internal state variables, respectively. The provided and the
internal state variables together form the “local” variables denoted by V loc = V prov ] V int .

Definition 9 (I/O-Signature). An I/O-signature is a pair Σ = (V,O) consisting of an I/O-state signature
V and an I/O-operation signature O.

Predicates on states. We use a generic, basic framework to deal with predicates and states. For any sets
W,W ′ ⊆ SV of state variables and set X ⊆ LV of logical variables, we assume a set S(W,X) of state
predicates and a set T (W,W ′, X) of transition predicates. State predicates, often denoted by ϕ, refer to
single states and transition predicates, often denoted by π, to pairs of states (pre- and poststates). We
require that S(W,X) and T (W,W ′, X) are monotonic w.r.t. set inclusion in all arguments, and that both
sets are closed under the usual logical connectives like conjunction (∧) and implication (⇒).

Data states and satisfaction relation. For any W ⊆ SV, we define the set D(W ) of W -data states to consist
of all functions σ : W → U assigning values to state variables; an element σ ∈ D(W ) defines a concrete
data state w.r.t. W . For each subset X ⊆ LV, we define the set Val(X) of all valuations ρ : X → U . We
assume that state predicates ϕ ∈ S(W,X) are equipped with a satisfaction relation (σ; ρ) �XW ϕ for states
σ ∈ D(W ) and valuations ρ ∈ Val(X). If X = ∅ then we also write σ �XW ϕ. Similarly, for transition
predicates π ∈ T (W,W ′, X) we assume a satisfaction relation (σ, σ′; ρ) �XW,W ′ π, for two states σ ∈ D(W )
(prestate) and σ′ ∈ D(W ′) (poststate) and valuations ρ ∈ Val(X). Super- and subscripts of the satisfaction
relation are omitted in the following if they are clear from the context. For ϕ ∈ S(W,X), we write � ϕ to
express that ϕ is universally valid, i.e. (σ; ρ) � ϕ for all σ ∈ D(W ) and all ρ ∈ Val(X). ϕ is satisfiable if
there exists σ ∈ D(W ) and ρ ∈ Val(X) such that (σ; ρ) � ϕ. Universal validity and satisfiability of transition
predicates are defined analogously. The logical connectives are interpreted as usual, e.g. (σ; ρ) � ϕ1 ∧ ϕ2 iff
(σ; ρ) � ϕ1 and (σ; ρ) � ϕ2. We require that the language contains a universally valid state (and transition)
predicate true. We will frequently use state predicates in combination with transition predicates. Therefore,
we require that every state predicate is also a transition predicate where state variables refer to the prestate
only; i.e. given a state predicate ϕ ∈ S(W,X), we require that ϕ ∈ T (W,W ′, X) for any W ′ ⊆ SV such that
for all σ ∈ D(W ), all σ′ ∈ D(W ′) and all ρ ∈ Val(X), (σ, σ′; ρ) �XW,W ′ ϕ iff (σ; ρ) �XW ϕ

Finally, we require that a satisfaction condition, similar to institutions [16], holds. For transition predi-
cates π, the satisfaction condition is as follows: For all W1 ⊆W ′1 ⊆ SV, W2 ⊆W ′2 ⊆ SV and X ⊆ X ′ ⊆ LV,
for all σ ∈ D(W ′1) and σ′ ∈ D(W ′2) and ρ ∈ Val(X ′), for all π ∈ T (W1,W2, X) it holds that

(σ, σ′; ρ) �X
′

W ′
1,W

′
2
π if and only if (σ|W1

, σ′|W2
; ρ|X) �XW1,W2

π
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where f |A denotes the usual restriction of a function f to a subset A of its definition domain. An analogous
satisfaction condition is required for state predicates. The satisfaction condition is implicitly used throughout
the proofs in this paper.

The above definitions are generic and sufficient for the following considerations. Therefore, we do not
fix a particular syntax for signatures and predicates here, neither a particular definition of the satisfaction
relation. We claim that our notions could be easily instantiated in the context of a particular assertion
language based, e.g., on the equational or first-order logic calculus or on set-theoretic notations like in Z.
How this would work in the case of the Object Constraint Language OCL is sketched in [8].

Example 1. Our running example is a simple system consisting of two components modeling a researcher
and a coffee machine. In short, the researcher can drop coins into the machine’s slot, and can request coffee
or tea.

We start by exemplifying the use of signatures in our running example. The component Researcher has
the I/O-signature ΣResearcher = (VResearcher , OResearcher ) where

V prov
Researcher = ∅ Oprov

Researcher = {wakeUp, coffee, tea}
V req

Researcher = {cp,m} Oreq
Researcher = {publish, coin(x), selectCoffee, selectTea}

V int
Researcher = {ct} Oint

Researcher = {relax}

The component Researcher has as internal state variable ct modeling the number of coffees the researcher has
drunk today. Required state variables are cp which models the machine’s coffee price and m the machine’s
current credit. The provided operations include wakeUp to wake up the sleeping researcher, coffee and tea
to receive a coffee or tea. The required operations are publish (write and publish a paper), coin(x) (drop a
coin with value x into the machine’s coin slot), selectCoffee and selectTea (press the coffee and tea button,
respectively). Finally, the researcher relaxes by performing the internal operation relax . The only operation
having formal parameters is coin(x).

The I/O-signature ΣMachine = (VMachine , OMachine) of the component Machine is determined by the sets
of variables V prov

Machine = {cp,m}, V req
Machine = {} and V int

Machine = {}, and the sets of operations are given by
Oprov

Machine = {coin(x), selectCoffee, selectTea}, Oreq
Machine = {coffee, tea} and Oint

Machine = {}, �

Transition Labels of MIODs. We are now able to define the kind of labels which can occur in a modal
input/output automaton with data constraints. Given an I/O-signature Σ = (V,O), the set L(Σ) of Σ-
labels consists of the following expressions where operations (of any kind) are surrounded by pre- and
postconditions which may contain the operation’s formal parameters as logical variables.

• [ϕ]op?[π] with ϕ ∈ S(V, par(op)), op ∈ Oprov , π ∈ T (V, V loc , par(op)).

• [ϕ]op![π] with ϕ ∈ S(V, par(op)), op ∈ Oreq , π ∈ T (V, V req , par(op)).

• [ϕ]op; [π] with ϕ ∈ S(V, par(op)), op ∈ Oint , π ∈ T (V, V loc , par(op)).

Note that the symbols “?” (“!”,“;”) are just used as decorations in order to emphasize that op is a provided
(required, internal) operation. Thus in the following, if we write [ϕ]op[π] then op can be a provided, required
or internal operation.

We have decided to consider explicit preconditions instead of considering postconditions only and relying
on their weakest preconditions [10]. Explicit preconditions meet better our intuition about the contract
principle of interfaces and the methodological ideas for the definitions of compatibility and refinement later
on. Preconditions ϕ are state predicates which can refer to any kind of state variable, i.e. to variables local to
a component as well as to required variables in the environment. This means that input, output and internal
operations of a component can be guarded by a condition which can be checked in an implementation by
inspecting the local data state of the component and/or by querying the visible data state of the environment.

An input label [ϕ]op?[π] models that a provided operation op can be invoked under the precondition
ϕ and then the postcondition π will hold after the execution of op. The postcondition π of an input is a
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transition predicate which must only specify changes of data states for local state variables. Concerning
the contract principle, the precondition ϕ expresses both, a guarantee and an assumption of the input. It
guarantees that the operation is input-enabled if ϕ holds while it assumes that the operation is only called in
a state where ϕ holds. For inputs, the postcondition π expresses just a guarantee, saying that the operation
execution will lead to a state where π holds.

An output label [ϕ]op![π] models that a component issues a call to a required operation op if the pre-
condition ϕ is satisfied and after execution of the invoked operation the component expects that the post-
condition π holds. The postcondition of an output is a transition predicate which must only specify the
expected changes of the visible data states in the environment, i.e. for required state variables. Hence,
outputs are not expected to alter the data state of the calling component itself. From the contract point of
view, the precondition ϕ of an output expresses again a guarantee and an assumption. It guarantees that
the operation call is issued only in a state where ϕ holds while it assumes that the environment will be
ready (enabled) to take the operation call if ϕ is satisfied. For outputs, the postcondition π expresses just
an assumption on the environment as explained above.

Finally, an internal label [ϕ]op; [π] stands for the execution of an internal operation op. In this case
ϕ describes the condition under which the internal operation is executed and π models the change of the
component’s local data state caused by the execution of the operation op. For internal operations the
contract principle is not relevant.

The next definition extends modal input/output automata to take into account constraints on data
states. The resulting transition systems, called MIODs, provide interface specifications for components with
data states. They do not only specify the control flow of behaviors but also the effect on data states in terms
of pre- and postconditions. Moreover, the modalities stemming from MIOs allow additionally to distinguish
must and may transitions. In the context of modalities the assume/guarantee reasoning from above can
even be refined, since preconditions on may transitions can only express assumptions but no guarantees. In
particular, enabledness of an input can only be guaranteed by must transitions. Consider, for instance, a
must transition starting from the initial state with label [ϕ]op?[true] and a may transition from the initial
state with label [true]op?[true]. Then any (correct) implementation will be input-enabled in the initial state
if ϕ is satisfied. If ϕ is not satisfied there can be implementations which are not input-enabled but, according
to the may transition, there can also be implementations which are always input-enabled. But this is not
guaranteed by the interface specification.

Definition 10 (MIOD). A modal I/O automaton with data constraints (MIOD)

S = (Σ,St , init , ϕ0,∆may,∆must)

consists of an I/O-signature Σ, a finite set of states St , the initial (control) state init ∈ St , the initial (data)
state predicate ϕ0 ∈ S(V loc , ∅), a finite may transition relation ∆may ⊆ St × L(Σ) × St , and a finite must
transition relation ∆must ⊆ ∆may.

The class of all MIODs is denoted by Md.

Example 2. We continue our running example. The I/O-signatures have already been described in Ex. 1.
In Fig. 4 the two interface specifications for Researcher and Machine are shown. The I/O-signature is shown
in the diagram as follows. The sets of variables are written in the lower compartment of the surrounding
box. The sets of operations are shown by drawing them at the border of the box:

• If an operation is above an incoming arrow then it is a provided operation.

• If an operation is above an outgoing arrow then it is a required operation.

• If an operation is next to a small bullet without any arrows then it is an internal operation.

For instance, the set of operations OResearcher contains wakeUp as a provided, coin(x) as a required and
relax as an internal operation.
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Researcher

s0 s1 s2

s3 s4

wakeUp?

[x = 0.5]
coin(x)!

[m′ ≥ m+ x]

selectTea!

tea?
relax ;

publish!

[m ≥ cp]
selectCoffee!

coffee?

Machine

t0

t1 t2

[x = 0.5]
coin(x)?

[m′ ≥ m+ x]

[x = 1 ∨ x = 2]
coin(x)?
[m′ ≥ m+ x]

selectTea?

tea!

[m ≥ cp]
selectCoffee?

coffee!

V prov = {}, V req = {cp,m}, V int = {ct} V prov = {cp,m}, V req = {}, V int = {}

relax

coin(x)

selectCoffee

selectTea

coffee

tea

publish

wakeUp

Figure 4: Abstract system specification: Researcher and Machine.

The initial state of an MIOD is indicated by a state with an incoming arrow without source state. In
our examples, we always assume true as the initial state predicates. Must transitions are drawn with solid
arrows and may transitions with dashed arrows. May transitions underlying must transitions are not drawn.
Preconditions are written above/in front of and postconditions below/after operation names. We use a
very simple language for the predicates, with the usual arithmetic operations and relations with the usual
interpretation. The primed variables in postconditions indicate that we refer to its value in the poststate.
Pre- and postconditions of the form [true] are omitted.

The Researcher , after being woken up (wakeUp?), can throw 0.50e coins into the slot of the machine
(coin(x)!) while she can assume that the credit displayed increases accordingly. When the credit exceeds
the coffee price, she may press a button to request a coffee (selectCoffee!). She may also press the tea button
(selectTea!), even without throwing any coin into the machine’s slot. After the machine has dispensed either
coffee or tea (coffee?, tea?), she may relax (relax ;) or write and publish a paper (publish!). The behavior of
Machine is almost as expected. Note that in the initial state, it may also accept 1e or 2e coins. �

Before we develop refinement, compatibility, and composition for MIODs we will first consider, in the
next section, a semantic interpretation.

5. Implementation Semantics

We propose a formal semantics for MIODs which assigns, to any MIOD S, the class JSK of all correct
implementations of S. For the definition of implementations (or implementation models) we use guarded
input/output transition systems (GIOs) which are supposed to provide a suitable semantic formalization for
the behavior of components implemented on the basis of concrete data states and concrete control states
determining the current execution points of an implementation. Given an I/O-signature Σ = (V,O), the
state space of an implementation model is given by the cartesian product of a set C of control states and the
set D(V loc) of local data states. Hence any state (c, σ) of an implementation is determined by a control state
c ∈ C and a local data state σ ∈ D(V loc). Implementation labels describe incoming, outgoing and internal
operation calls with actual parameter values. Since the actual execution of all kinds of operations may
depend on conditions on the environment, labels will be restricted by a guard ν ∈ D(V req) which represents
a visible data state of the environment. Guards express that the implementation will only execute the
transition if the environment is in the state determined by the guard. This will, of course, be crucial when
we consider the composition of implementations later on. In a concrete program the guard may require that
the sender component performs in one atomic step a test on the visible data state of the environment and,
depending on the result, performs the action.

The set Limpl(Σ) of implementation labels consists of the following expressions:
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• A label of the form [ν](op, ρ)? expresses that if the visible state of the environment is ν, the provided
operation op is enabled for the actual parameters determined by valuation ρ ∈ Val(par(op)). A
transition labeled with [ν](op, ρ)? connects a (control) state where the operation is called with the
state after execution of the operation. Hence the implementation models considered here assume
atomic operation executions.

• A label of the form [ν](op, ρ)! expresses that the implementation issues an operation call of op with
actual parameters determined by ρ provided that the visible data state of the environment is ν. The
target state of a transition labeled by [ν](op, ρ)! is reached when the environment has finished the
execution of the operation.

• Finally, internal operation calls are described with labels of the form [ν](op, ρ); which express an
internal execution of an operation under the environment condition ν. The target state of a transition
labeled by [ν](op, ρ); is reached when the operation has finished its execution.

Definition 11 (GIO). A guarded input/output transition system (GIO) I = (Σ, Q, (c0, σ0),∆) consists of
an I/O-signature Σ, a set of states Q = C × D(V loc) where C is a set of control states, an initial state
(c0, σ0) ∈ Q, and a transition relation ∆ ⊆ Q× Limpl(Σ)×Q.

The class of all GIOs is denoted by G. The set of the reachable states of I is denoted by R(I).
Let us now discuss implementation correctness for an implementation model I w.r.t. a given MIOD

T . The implementor of T must ensure the guarantees provided by T if the assumptions are met (by the
environment). For the formalization of the implementation notion we follow the simulation idea of MIO
refinement and define an implementation relation between concrete and abstract states. First, we consider
must transitions of T with labels of the form [ϕ]op[π]; cf. 1 in Def. 12. Any such transition in T must (at
least) be implemented by a transition in I whenever ϕ is valid in the current data state (for any valuation
of the parameters of op), and the implementing transition in I must stay in the implementation relation.
If op is a provided or internal operation then the implementing transition must, additionally lead to a data
state in which the postcondition π is satisfied. The condition 2 of Def. 12 is similarly. It formalizes the fact
that each transition in the implementation is allowed by the specification.

Definition 12 (Implementation Relation). Let T be a MIOD and I be an GIO, both with the same
I/O-signature Σ = (V,O). A binary relation R ⊆ QI ×StT is an implementation relation between the states
of I and T iff for all ((c, σ), t) ∈ R,

1. from specification to implementation

for all (t, [ϕ]op[π], t′) ∈ ∆must
T , all ν ∈ D(V req), and all ρ ∈ Val(par(op)),

if (σ · ν; ρ) � ϕ then there exists ((c, σ), [ν](op, ρ), (c′, σ′)) ∈ ∆I such that

• if op ∈ Oprov ]Oint then (σ · ν, σ′; ρ) � π,1

• ((c′, σ′), t′) ∈ R;

2. from implementation to specification

if ((c, σ), [ν](op, ρ), (c′, σ′)) ∈ ∆I then there exists (t, [ϕ]op[π], t′) ∈ ∆may
T such that

• (σ · ν; ρ) � ϕ,

• if op ∈ Oprov ]Oint then (σ · ν, σ′; ρ) � π,

• ((c′, σ′), t′) ∈ R;

1Here and in the following the notation σ · ν denotes the union of the data states σ an ν which are defined on the disjoint
sets of local and required variables resp.
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A state (c, σ) ∈ SI implements a state t ∈ StT , written (c, σ) / t, iff there exists an implementation relation
containing ((c, σ), t). I is an implementation of T (or I implements T ), denoted by I / T , iff (c0, σ0) / initT
and σ0 � ϕ0.

The implementation semantics of a MIOD T is defined by JT K = {I ∈ G | I / T}. A MIOD is called
consistent, if JT K 6= ∅.

Example 3. Assume a correct implementation model I of Researcher . If I is in some concrete state (c, σ)
which is related by the implementation relation to the abstract state s1 of Researcher (see Fig. 4), then I
may perform a transition

((c, σ), [ν](coin(x), ρ)!, (c′, σ′)) ∈ ∆I

for some required data state ν ∈ D({m, cp}) and for some valuation ρ ∈ Val({x}). This transition can only
be allowed by the following transition in Researcher :

(s1, [x = 0.5]coin(x)![m′ ≥ m+ x], s1) ∈ ∆may
Researcher

Now correctness means that the precondition must be satisfied, i.e. (σ · ν; ρ) � x = 0.5 which basically
requires that ρ(x) = 0.5. The second correctness condition is that the target states (c′, σ′) and s1 are again
related by the implementation relation. Note that the postcondition of the required operation coin(x)! is
not taken into account in the implementation relation since it is an assumption on the change of the data
states in the environment. �

In the next sections, we will introduce refinement, (synchronous) composition, and compatibility for
GIOs; we will also introduce their counterparts on the level of MIODs, prove their soundness and hence arrive
at an interface theory which supports the desired properties of compositional refinement and preservation
of compatibility.

6. Refinement of MIODs

We follow the basic idea of modal refinement [22] where must transitions of an abstract specification must
be respected by the more concrete specification and, conversely, may transitions of the concrete specification
must be allowed by the abstract one. Concerning the impact of data constraints, every must transitions of
an abstract MIOD, say T , with a precondition ϕT must be simulated by a corresponding must transition of
a more concrete MIOD, say S, whose precondition does not require more than ϕT does. In general, this idea
can be relaxed since it is sufficient if the precondition on a must transition of T is matched by the disjunction
of several preconditions distributed over different transitions of S which all maintain the simulation relation
between states; see the first item of condition 1 in Def. 13. This condition is independent of the kind of
the labels. Concerning postconditions the situation is different, because postconditions are not related to
the executability of transitions but rather to the specification of admissible poststates after a transition has
fired. In this case, if the must transition of T concerns input or internal labels, the corresponding must
transition of the refinement S should lead to a postcondition which guarantees the postcondition πT of T .
This idea can again be relaxed by taking the splitting into different transitions in S into account; see item
two of Def. 13(1). If a must transition of T concerns an output label, then the postcondition πT expresses
the expectation of T about the next state of the environment. Then, obviously, the postcondition of the
refinement should be at most weaker than πT which is formalized, for the general case of splitting transitions,
in the third item of Def. 13(1).

When moving from concrete to abstract specifications concrete may transitions must be allowed by the
abstract specification which is formalized in condition 2 of Def. 13. In this case, the simulation of a concrete
may transition of S can be split into different allowed transitions of the abstract specification T . If we
compare conditions 1 and 2 we can observe that the implication direction concerning preconditions in a
refinement depends on the kind of the transitions (may or must) while the implication direction concerning
postconditions in a refinement depends on the kind of the labels (input, internal, or output). This fits to our
contract principle where postconditions of inputs are guarantees which must also hold in refinements while
postconditions of outputs are assumptions which must be valid in accordance with the abstract specification.
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RefinedResearcher

s′0 s′1

s′3 s′4

wakeUp?
[ct ′ = 0]

[x = 0.5∧m ≤ 3]
coin(x)!

[m′ ≥ m + x]

publish![(m ≥ cp) ∧ (ct ∗ cp < 5)]
selectCoffee!

coffee?
[ct ′ = ct + 1]

RefinedMachine

t′0

t′1 t′2

[x = 0.5 ∨ x = 1]
coin(x)?
[m′ = m+ x]

selectTea?

tea!

[m ≥ cp]
selectCoffee?
[m′ = m− cp]

coffee!

V prov = {}, V req = {cp,m}, V int = {ct} V prov = {cp,m}, V req = {}, V int = {}

relax

coin(x)

selectCoffee

selectTea

coffee

tea

publish

wakeUp

Figure 5: Refined system specification: RefinedResearcher and RefinedMachine.

Definition 13 (Modal Refinement). Let S and T be two MIODs with the same I/O-signature. A binary
relation R ⊆ StS × StT is a modal refinement between the states of S and T iff for all (s, t) ∈ R,

1. from abstract to concrete

if (t, [ϕT ]op[πT ], t′) ∈ ∆must
T and ϕT is satisfiable

then there exists N ≥ 0 and transitions (s, [ϕS,i]op[πS,i], s
′
i) ∈ ∆must

S , 0 ≤ i ≤ N , such that

• � ϕT ⇒
∨
i ϕS,i

• for all i, if op ∈ Oprov ]Oint then � ϕT ∧ ϕS,i ∧ πS,i ⇒ πT

• for all i, if op ∈ Oreq then � ϕT ∧ ϕS,i ∧ πT ⇒ πS,i

• for all i, (s′i, t
′) ∈ R

are satisfied.

2. from concrete to abstract

if (s, [ϕS ]op[πS ], s′) ∈ ∆may
S and ϕS is satisfiable

then there exists N ≥ 0 and (t, [ϕT,i]op[πT,i], t
′
i) ∈ ∆may

T , 0 ≤ i ≤ N , such that

• � ϕS ⇒
∨
i ϕT,i

• for all i, if op ∈ Oprov ]Oint then � ϕS ∧ ϕT,i ∧ πS ⇒ πT,i

• for all i, if op ∈ Oreq then � ϕS ∧ ϕT,i ∧ πT,i ⇒ πS

• for all i, (s′, t′i) ∈ R
are satisfied.

A state s ∈ StS refines a state t ∈ StT , written s ≤md t, iff there exists a modal refinement between the
states of S and T containing (s, t). S is a modal refinement of T , written S ≤md T , iff initS ≤md initT and
� ϕ0

S ⇒ ϕ0
T .

It can be easily verified that ≤md is a preorder on Md (the class of all MIODs).

Example 4. The abstract specifications (see Fig. 4) are now refined as shown in Fig. 5. Concerning the
control flow, we have left out the may transitions with label selectTea! and relax ; and the other may
transitions have been refined to must transitions. Concerning the data constraints, in RefinedResearcher
the postcondition of wakeUp? has been strengthened by initializing the internal state variable ct (modeling
the number of coffees she had today) by 0. The precondition of coin(x)! is strengthened such that she
will stop throwing coins into the machine’s slot if the displayed credit is greater than 3. RefinedResearcher
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is refined in such a way that the request of coffee also depends on the number of coffees she has already
drunk today (ct ∗ cp < 5, i.e. she requests coffee if she did not have enough coffee today, or the coffee is
very cheap). When the machine dispenses a coffee the number of coffees is increased by one. The relation
demonstrating the refinement RefinedMachine ≤md Machine is R = {(s′i, si) | i ∈ {0, 1, 3, 4}}. For instance,
the may transition

(s′1, [(m ≥ cp) ∧ (ct ∗ cp < 5)]selectCoffee![true], s′3) ∈ ∆may
RefinedResearcher

is allowed by the may transition

(s1, [m ≥ cp]selectCoffee![true], s3) ∈ ∆may
Researcher

and we have to check whether � ((m ≥ cp) ∧ (ct ∗ cp < 5)) ⇒ (m ≥ cp) which is obviously satisfied. The
condition for the postconditions are trivially satisfied, and the next states s′3 and s3 are again related by R.

Now consider the refined specification RefinedMachine. The two input transitions for operation coin(x)?
has been refined to a single (must) transition. Concerning predicates, the postconditions of the transitions
labeled with coin(x)? and selectCoffee? have been strengthened. The relation demonstrating the refinement
RefinedMachine ≤md Machine is R′ = {(t′i, ti) | i ∈ {0, 1, 2}}. For instance, the must transition

(t0, [x = 0.5]coin(x)?[m′ ≥ m+ x], t0) ∈ ∆must
Machine

is matched by
(t′0, [x = 0.5 ∨ x = 1]coin(x)?[m′ = m+ x], t′0) ∈ ∆must

RefinedMachine

and, obviously, � x = 0.5 ⇒ (x = 0.5 ∨ x = 1), and for all may transitions labeled with coin(x)? in
RefinedMachine, postconditions must match, i.e. � x = 0.5∧(x = 0.5∨x = 1)∧(m′ = m+x)⇒ (m′ ≥ m+x)
is satisfied. There is also a may transition in RefinedMachine,

(t′0, [x = 0.5 ∨ x = 1]coin(x)?[m′ = m+ x], t′0) ∈ ∆may
RefinedMachine

which must be allowed by Machine. We can find the two transitions in Machine,

(t0, [x = 0.5]coin(x)?[m′ ≥ m+ x], t0) ∈ ∆may
Machine

(t0, [x = 1 ∨ x = 2]coin(x)?[m′ ≥ m+ x], t0) ∈ ∆may
Machine

for which � (x = 0.5 ∨ x = 1)⇒ x = 0.5 ∨ (x = 1 ∨ x = 2), and for the postconditions,

� (x = 0.5 ∨ x = 1) ∧ x = 0.5 ∧ (m′ = m+ x)⇒ (m′ ≥ m+ x)

� (x = 0.5 ∨ x = 1) ∧ (x = 1 ∨ x = 2) ∧ (m′ = m+ x)⇒ (m′ ≥ m+ x)

are satisfied. �

As a first result we can prove that modal refinement implies inclusion of implementation semantics. Thus
modal refinement of MIODs is sound; refinement means less implementations. Since, in general, we cannot
get completeness (which was already shown for MIOs), refinement of MIODs will remain an approximation.
Obviously, the refinement relation proposed above is a better approximation than the simpler form of MIOD
refinement in [2] which was appropriate to show the intuition (without incorporating splitting of transitions
as done above).

Proposition 5. Let S and T be two MIODs with the same I/O-signature. Then S ≤md T implies JSK ⊆ JT K.

Proof. Let I ∈ JSK be an implementation of S. We have to show that I ∈ JT K. We define a relation
R ⊆ QI × StT by

R = {((c, σ), t) | ∃s ∈ StS : (c, σ) / s and s ≤md t}.
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We show that R is an implementation relation between I and T . Let ((c, σ), t) ∈ R. By definition of R we
can assume a state s ∈ StS such that (c, σ) / s and s ≤md t.

Condition 1 of Def. 12: Assume (t, [ϕT ]op[πT ], t′) ∈ ∆must
T and let ν ∈ D(V req) and ρ ∈ Val(par(op))

such that
(σ · ν; ρ) � ϕT . (1)

We know by assumption that s ≤md t, hence by definition of modal refinement, there exists N ≥ 0 and
transitions (s, [ϕS,i]op[πS,i], s

′
i) ∈ ∆must

S , for 0 ≤ i ≤ N , such that � ϕT ⇒
∨
i ϕS,i. From (1) it follows that

there is some 0 ≤ j ≤ N such that
(σ · ν; ρ) � ϕS,j . (2)

Additionally, we know from s ≤md t that for the target state s′j it holds that s′j ≤m t′, and

if op ∈ Oprov ]Oint then � ϕT ∧ ϕS,j ∧ πS,j ⇒ πT . (3)

From (c, σ) / s it follows that there exists a transition ((c, σ), [ν](op, ρ), (c′, σ′)) ∈ ∆I such that (c′, σ′) / s′j ,
and

if op ∈ Oprov ]Oint then (σ · ν, σ′; ρ) � πS,j . (4)

We still have to show that if op ∈ Oprov ] Oint then (σ · ν, σ′; ρ) � πT . However this follows from (1), (2),
(3), and (4).

Condition 2 can be shown in a similar way.
Finally, from S ≤md T it follows that initS ≤md initT and � ϕ0

S ⇒ ϕ0
T . Moreover, from I ∈ JSK we know

that (c0, σ0)/initS and σ0 � ϕ0
S . Then ((c0, σ0), initT ) ∈ R since there is initS ∈ StS such that (c0, σ0)/initS

and initS ≤md initT ; and σ0 � ϕ0
S and � ϕ0

S ⇒ ϕ0
T imply σ0 � ϕ0

T . Thus I is an implementation of T . �

7. Composition

MIODs can be composed to specify the behavior of concurrent systems of interacting components with
data states. The composition operator extends the synchronous composition of modal input/output au-
tomata [20, 4].

For defining the composition operator, we need some syntactic restrictions under which two I/O-signatures
are composable. We require that overlapping of operations only happens on complementary types and
that the same holds for state variables. More precisely, two I/O-signatures ΣS and ΣT are composable if
OS ∩ OT = (Oprov

S ∩ Oreq
T ) ] (Oprov

T ∩ Oreq
S ) and VS ∩ VT = (V prov

S ∩ V req
T ) ] (V prov

T ∩ V req
S ). Two MIODs

(GIOs resp.) are called composable if their signatures are composable.
Two composable I/O-signatures ΣS = (VS , OS) and ΣT = (VT , OT ) can be composed to ΣS ⊗ ΣT =

(OS ⊗OT , VS ⊗ VT ) where shared variables as well as shared operations are internalized:

(OS ⊗OT )prov = (Oprov
S ]Oprov

T ) \ (OS ∩OT ) (VS ⊗ VT )prov = (V prov
S ] V prov

T ) \ (VS ∩ VT )
(OS ⊗OT )req = (Oreq

S ]Oreq
T ) \ (OS ∩OT ) (VS ⊗ VT )req = (V req

S ] V req
T ) \ (VS ∩ VT )

(OS ⊗OT )int = Oint
S ]Oint

T ] (OS ∩OT ) (VS ⊗ VT )int = V int
S ] V int

T ] (VS ∩ VT )

Hence, (VS ⊗ VT ) = VS ∪ VT and (VS ⊗ VT )loc = V loc
S ∪ V loc

T .
First, we define a composition operator on the syntactic level of MIODs. The synchronous composition

S⊗T of two MIODs S and T synchronizes transitions whose labels refer to shared operations. For instance,
a transition with label [ϕS ]op![πS ] of S is synchronized with a transition with label [ϕT ]op?[πT ] of T which
results in a transition with label [ϕS ∧ ϕT ]op[πT ] where the original preconditions are combined by logical
conjunction and only the postcondition πT of the input is kept. Since the postcondition πS of the output
expresses an assumption on the environment and since input and output actions synchronize to an internal
action, πS is irrelevant for the composition. Transitions whose labels concern shared operations which
cannot be synchronized are dropped (as usual) while all other transitions are interleaved in the composition.
Concerning modalities we follow the usual modal composition operator [20] which yields a must transition
if two must transitions are synchronized and a may transition otherwise.
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Researcher ⊗d Machine

(s0, t0) (s1, t0)

(s3, t2) (s4, t0)

(s2, t1)
wakeUp?

[x = 0.5 ∧ x = 0.5]
coin(x); [m′ ≥ m+ x]

[x = 0.5 ∧ (x = 1 ∨ x = 2)]
coin(x)!
[m′ ≥ m+ x]

selectTea;

tea;

relax ;

publish![(m ≥ cp) ∧ (m ≥ cp)]
selectCoffee;

coffee;

V prov = {}, V req = {}, V int = {ct , cp,m}

coin(x)

selectCoffee

selectTea

coffee

tea
relax

publish

wakeUp

Figure 6: Abstract system specifications composed: Researcher ⊗d Machine.

Definition 14 (Composition of MIODs). The composition of two composable MIODs S and T is de-
fined by the MIOD

S ⊗d T = (ΣS ⊗ ΣT ,StS × StT , (initS , initT ), ϕ0
S ∧ ϕ0

T ,∆
may
S⊗dT

,∆must
S⊗dT

)

where the transition relations ∆may
S⊗dT

and ∆must
S⊗dT

are generated by the following rules:

(s, [ϕS ]op![πS ], s′) ∈ ∆γ
S , (t, [ϕT ]op?[πT ], t′) ∈ ∆γ

T

((s, t), [ϕS ∧ ϕT ]op; [πT ], (s′, t′)) ∈ ∆γ
S⊗dT

op ∈ Oreq
S ∩Oprov

T , γ ∈ {may,must}

(s, [ϕS ]op?[πS ], s′) ∈ ∆γ
S , (t, [ϕT ]op![πT ], t′) ∈ ∆γ

T

((s, t), [ϕS ∧ ϕT ]op; [πS ], (s′, t′)) ∈ ∆γ
S⊗dT

op ∈ Oprov
S ∩Oreq

T , γ ∈ {may,must}

(s, [ϕS ]op[πS ], s′) ∈ ∆γ
S , t ∈ StT

((s, t), [ϕS ]op[πS ], (s′, t)) ∈ ∆γ
S⊗dT

op 6∈ OS ∩OT , γ ∈ {may,must}

(t, [ϕT ]op[πT ], t′) ∈ ∆γ
T , s ∈ StS

((s, t), [ϕT ]op[πT ], (s, t′)) ∈ ∆γ
S⊗dT

op 6∈ OS ∩OT , γ ∈ {may,must}

The composition is well-defined for composable MIODs; i.e. it respects the conditions on the state variables
of labels.

Example 5. Fig. 6 shows the composition

Researcher ⊗d Machine

of the two abstract specifications Researcher and Machine (see also Fig. 4). Preconditions of synchronized
transitions are conjoined whereas the new postcondition is the postcondition of the synchronized input
transition. Shared variables and shared operations become internal in the composition. Note also that,
concerning the modalities, a transition in the composition labeled with a shared operation is only a must
transition if both synchronized input and output transitions were must transitions.

The next theorem shows that modal refinement is a precongruence with respect to the composition of
MIODs which provides our first compositionality result.

Theorem 6. Let S, S′, T, T ′ be MIODs and let S and T be composable. Then S′ ≤md S and T ′ ≤md T
imply S′ ⊗d T ′ ≤md S ⊗d T .
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Proof. Composability of S and T implies that S ⊗d T is defined. Since modal refinement does not change
I/O-signatures, S′ and T ′ are again composable and hence S′ ⊗d T ′ is defined, too. We define a relation
R ⊆ (StS′ × StT ′)× (StS × StT ) by

R = {((s′, t′), (s, t)) | s′ ≤md s and t′ ≤md t}.

We show that R is a modal refinement between the states of S′ ⊗d T ′ and S ⊗d T .
Let ((s′, t′), (s, t)) ∈ R, so we can assume that s′ ≤md s and t′ ≤md t. Let

((s, t), [ϕ]op[π], (ṡ, ṫ)) ∈ ∆must
S⊗dT

(5)

be a must transition in S ⊗d T . The only interesting case is when op is a shared operation of S and T , i.e.
op ∈ OS ∩ OT ; w.l.o.g., let op ∈ Oreq

S ∩ Oprov
T . From (5) and the rules of composition it follows that there

exists
(s, [ϕS ]op![πS ], ṡ) ∈ ∆must

S and (t, [ϕT ]op?[πT ], ṫ) ∈ ∆must
T

such that ϕ ≡ ϕS ∧ ϕT and π ≡ πT . From s′ ≤md s and t′ ≤md t we can conclude that there exists N ≥ 0
and

(s′, [ϕS′,i]op![πS′,i], ṡ
′
i) ∈ ∆must

S′ , 0 ≤ i ≤ N , such that � ϕS ⇒
∨
i

ϕS′,i

and for all i, ṡ′i ≤md ṡ. Moreover, there exists M ≥ 0 and

(t′, [ϕT ′,k]op?[πT ′,k], ṫ′k) ∈ ∆must
T ′ , 0 ≤ k ≤M , such that � ϕT ⇒

∨
k

ϕT ′,k

and for all k, ṫ′k ≤md ṫ and � ϕT ∧ ϕT ′,k ∧ πT ′,k ⇒ πT .
Then, for each i and k, we have

((s′, t′), [ϕS′,i ∧ ϕT ′,k]op; [πT ′,k], (ṡ′i, ṫ
′
k)) ∈ ∆must

S′⊗dT ′

and we know (since ϕ ≡ ϕS ∧ ϕT ) that � ϕ⇒ (
∨
i ϕS′,i) ∧ (

∨
k ϕT ′,k) which implies

� ϕ⇒
∨
i,k

(ϕS′,i ∧ ϕT ′,k).

And for all i and k, it is satisfied that � ϕ ∧ (ϕS′,i ∧ ϕT ′,k) ∧ πT ′,k ⇒ π and ((ṡ′i, ṫ
′
k), (ṡ, ṫ)) ∈ R.

The other direction of modal refinement (condition 2 of Def. 13, from concrete to abstract) is very similar
to the proof above.

Finally, S′ ⊗d T ′ ≤md S ⊗d T is satisfied: R is a modal refinement between the states of S′ ⊗d T ′ and
S ⊗d T , and

• ((initS′ , initT ′), (initS , initT )) ∈ R since S′ ≤md S implies initS′ ≤md initS and T ′ ≤md T implies
initT ′ ≤md initT ;

• � ϕ0
S′ ∧ ϕ0

T ′ ⇒ ϕ0
S ∧ ϕ0

T since S′ ≤md S implies ϕ0
S′ ⇒ ϕ0

S and T ′ ≤md T implies ϕ0
T ′ ⇒ ϕ0

T .

�

Example 6. Fig. 7 shows the composition RefinedResearcher ⊗d RefinedMachine of the refined system
specifications RefinedResearcher and RefinedMachine (see also Fig. 5 for their individual specifications).
Thanks to Theorem 6 we can infer

(RefinedResearcher ⊗d RefinedMachine) ≤md (Researcher ⊗d Machine)
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RefinedResearcher ⊗d RefinedMachine

(s′0, t
′
0) (s′1, t

′
0)

(s′3, t
′
2) (s′4, t

′
0)

wakeUp?
[ct ′ = 0]

[(x = 0.5 ∧m ≤ 3)
∧(x = 0.5 ∨ x = 1)]

coin(x);
[m′ = m+ x]

publish![((m ≥ cp) ∧ (ct ∗ cp < 5))
∧(m ≥ cp)]

selectCoffee;
[m′ = m− cp]

coffee;
[ct ′ = ct + 1]

V prov = {}, V req = {}, V int = {ct , cp,m}

coin(x)

selectCoffee

selectTea

coffee

tea
relax

publish

wakeUp

Figure 7: Refined system specifications composed: RefinedResearcher ⊗d RefinedMachine.

just by verifying RefinedResearcher ≤md Researcher and RefinedMachine ≤md Machine. This property is
fundamental in component-based design: Once we have proven that the composed abstract specifications
refines some other MIOD (which expresses some desired property of the composed system), this property
will be satisfied in any composition of refined specifications; according to Theorem 6 the refinement relation
need to be established for the individual components only. In our example, such a property could be that
coffee is only requested when there is enough money in the machine; this can be easily expressed by a MIOD.
Another simple (data-independent) property could be that a publication is only possible after drinking either
tea or coffee. �

Next we define a semantic composition operator for implementation models. Given two composable
GIOs I and J , their composition I ⊗G J synchronizes transitions whose labels refer to shared operations:
a transition with label [νI ](op, ρ)! of I is synchronized with a transition with label [νJ ](op, ρ)? of J if the
current data state of J matches ν. More precisely, if σJ is the source data state in J , matching means
that ν(x) = σJ(x) for all x ∈ dom(ν). If ν does not match σJ no output should be issued and the output
transition is dropped. All other transitions are interleaved in the composition.

Definition 15 (Composition of GIOs). Let I and J be two composable GIOs.The composition of I and
J is defined by the GIO

I ⊗G J = (ΣI ⊗ ΣJ , (CI × CJ)×D((VI ⊗ VJ)loc), ((c0I , c
0
J), σ0

I · σ0
J),∆I⊗GJ)

where the transition relation ∆I⊗GJ is defined by

((cI , σI), [νI ](op, ρ), (c′I , σ
′
I)) ∈ ∆I

((cJ , σJ), [νJ ](op, ρ), (c′J , σ
′
J)) ∈ ∆J (σI · νI)|(VI∩VJ ) = (σJ · νJ)|(VI∩VJ )

(((cI , cJ), σI · σJ), [(νI · νJ)|(VI⊗VJ )req ](op, ρ), ((c′I , c
′
J), σ′I · σ′J)) ∈ ∆I⊗GJ

op ∈ OI ∩OJ

((cI , σI), [νI ](op, ρ), (c′I , σ
′
I)) ∈ ∆I

(cJ , σJ) ∈ QJ νJ ∈ D(V req
J ) (σI · νI)|(VI∩VJ ) = (σJ · νJ)|(VI∩VJ )

(((cI , cJ), σI · σJ), [(νI · νJ)|(VI⊗VJ )req ](op, ρ), ((c′I , cJ), σ′I · σJ)) ∈ ∆I⊗GJ
op /∈ OI ∩OJ

((cJ , σJ), [νJ ](op, ρ), (c′J , σ
′
J)) ∈ ∆J

(cI , σI) ∈ QI νI ∈ D(V req
I ) (σI · νI)|(VI∩VJ ) = (σJ · νJ)|(VI∩VJ )

(((cI , cJ), σI · σJ), [(νI · νJ)|(VI⊗VJ )req ](op, ρ), ((cI , c′J), σI · σ′J)) ∈ ∆I⊗GJ
op /∈ OI ∩OJ

The next result shows that our framework supports independent implementability of composable MIODs
and therefore substitutability of correct implementations.
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Theorem 7. Let S and T be two composable MIODs. If I ∈ JSK and J ∈ JT K then I ⊗G J ∈ JS ⊗d T K.

Proof. We define a relation R ⊆ QI⊗GJ × StS⊗dT by

R = {(((cI , cJ), σI · σJ), (s, t)) | (cI , σI) / s and (cJ , σJ) / t}.

We show that R is an implementation relation between the states of I ⊗G J and S ⊗d T . Let (((cI , cJ), σI ·
σJ), (s, t)) ∈ R so we can assume that (cI , σI) / s and (cJ , σJ) / t are satisfied.

Condition 1 of Def. 12: Assume ((s, t), [ϕ]op[π], (s′, t′)) ∈ ∆must
S⊗dT

, and let ν ∈ D((VS ⊗ VT )req) and
ρ ∈ Val(par(op)) such that

(σI · σJ · ν; ρ) � ϕ. (6)

If op /∈ OS ∩ OT then, w.l.o.g., it is a transition originating from a transition (s, [ϕ]op[π], s′) ∈ ∆must
S and

t = t′. Then, from (6) it follows that (σI ·σJ |(V prov
J ∩V req

I ) · ν|V req
I

; ρ) � ϕ. From (cI , σI) / s it follows that there
exists

((cI , σI), [σJ |(V prov
J ∩V req

I ) · ν|V req
I

](op, ρ), (c′I , σ
′
I)) ∈ ∆I

such that (c′I , σ
′
I) / s

′, and

if op ∈ Oprov
S ]Oint

S then (σI · σJ |(V prov
J ∩V req

I ) · ν|V req
I
, σ′I ; ρ) � π. (7)

Then we have
(((cI , cJ), σI · σJ), [ν](op, ρ), ((c′I , cJ), σ′I · σJ)) ∈ ∆I⊗GJ

such that (((c′I , cJ), σ′I · σJ), (s′, t)) ∈ R, and if op ∈ Oprov
S ]Oint

S then, by (7), (σI · σJ · ν, σ′I · σJ ; ρ) � π.
Now assume that op ∈ OS ∩OT . Then the transition ((s, t), [ϕ]op[π], (s′, t′)) ∈ ∆must

S⊗dT
must come from

a synchronization of (w.l.o.g. op ∈ Oreq
S ∩Oprov

T )

(s, [ϕS ]op![πS ], s′) ∈ ∆must
S and (t, [ϕT ]op?[πT ], t′) ∈ ∆must

T

such that ϕ ≡ ϕS ∧ ϕT and π ≡ πT . Hence, by (6), we get that

(σI · σJ |(V prov
J ∩V req

I ) · ν|V req
I

; ρ) � ϕS and (σJ · σI |(V prov
I ∩V req

J ) · ν|V req
J

; ρ) � ϕT .

From (cI , σI) / s and (cJ , σJ) / t it follows that there exists

((cI , σI), [σJ |(V prov
J ∩V req

I ) · ν|V req
I

](op, ρ), (c′I , σ
′
I)) ∈ ∆I

and
((cJ , σJ), [σI |(V prov

I ∩V req
J ) · ν|V req

J
](op, ρ), (c′J , σ

′
J)) ∈ ∆J

such that (c′I , σ
′
I) / s

′, (c′J , σ
′
J) / t′ and (σJ · σI |(V prov

I ∩V req
J ) · ν|V req

J
, σ′J ; ρ) � πT . Then there exists

(((cI , cJ), σI · σJ), [ν](op, ρ), ((c′I , c
′
J), σ′I · σ′J)) ∈ ∆I⊗GJ

such that (σI · σJ · ν, σ′I · σ′J ; ρ) � π and (((c′I , c
′
J), σ′I · σ′J), (s′, t′)) ∈ R.

The second condition of Def. 12 follows the same schema and can be proven analogously.
Thus we have shown that R is an implementation relation between the states of I ⊗G J and S ⊗d T .

From I ∈ JSK and J ∈ JT K it follows that (c0I , σ
0
I ) / initS , σ0

I � ϕ0
S , (c0J , σ

0
J) / initT and σ0

J � ϕ0
T . We can

infer that (((c0I , c
0
J), σ0

I · σ0
J), (initS , initT )) ∈ R and σ0

I · σ0
J � ϕ0

S ∧ ϕ0
T which finishes the proof. �
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8. Compatibility

When we want to compose two MIODs we have seen that it is first necessary to check composability
which is a purely syntactic condition. But then it is of course important that the two components work
properly together, i.e. are behaviorally compatible. The following compatibility notion builds upon (strong)
modal compatibility as defined in [4] and reconsidered in Sect. 3. From the control point of view (strong)
compatibility requires that in any reachable state of the product S⊗dT of two MIODs S and T , if one MIOD
may issue an output (in its current control state) then the other MIOD is in a control state where it must be
able to take the corresponding input.2 In the context of data states we have the additional requirement that
the data constraints of the two MIODs S and T must be compatible. Since the data constraints imposed
by a MIOD can be considered as a contract, the two contracts according to S and T must match. This
means that if a shared operation may be sent out under a certain precondition, the sender assumes that
the communication partner must be enabled to take the operation call in its current state. Conversely, the
receiver assumes that its operation may only be called in a state where the precondition of the receiver is
valid. Moreover, the sender assumes that its expected postcondition is fulfilled after the operation execution
which must be guaranteed by the receiver. These considerations suggest condition 1(a) in Def. 16, where
S plays the role of the sender and T plays the role of the receiver. Here the condition is again relaxed to
take into account a possible splitting of transitions on the side of the receiver which allows to express a case
distinction for accepting inputs. Condition 1(b) additionally requires that also any other possible reception
of the input leads to a state where the expected postcondition is satisfied.

For practical verification of compatibility of MIODs, we go through all syntactically reachable states of
S ⊗d T and check whether the pre- and postconditions of synchronizing transitions match. The set of the
syntactically reachable states of S is given by R(S) =

⋃∞
n=0Rn where R0(S) = {initS} and Rn+1(S) =

{s′ | s ∈ Rn(S), (s, `, s′) ∈ ∆may
S }. Note that taking the syntactically reachable states is, of course, an over-

approximation of the (semantically) reachable states in the composition of implementation models. Hence
non compatible MIODs may still admit compatible implementations but not the other way round as shown
in Theorem 11 below.

Definition 16 (Compatibility of MIODs [2]). Let S and T be two composable MIODs. S and T are
compatible, denoted by S �d T , iff for all reachable states (s, t) ∈ R(S ⊗d T ),

1. for all op ∈ Oreq
S ∩Oprov

T , whenever (s, [ϕS ]op![πS ], s′) ∈ ∆may
S and ϕS is satisfiable then

(a) there exists (t, [ϕT,i]op?[πT,i], t
′
i) ∈ ∆must

T , 0 ≤ i ≤ N , such that � ϕS ⇒
∨
i ϕT,i, and

(b) for all (t, [ϕT ]op?[πT ], t′) ∈ ∆may
T , it holds that � ϕS ∧ ϕT ∧ πT ⇒ πS ;

2. symmetrically for all op ∈ Oreq
T ∩Oprov

S .

Condition 1(a) of Def. 16 expresses that the operation call to op which is issued by S under the condition
that ϕS holds, must be accepted by T , hence there must exist accepting transitions in T such that the
disjunction of their preconditions is at most weaker than ϕS . Condition 1(b) of Def. 16 requires that the
postcondition πS (the assumption) of the caller S is respected: for any may transition with a corresponding
input label the assumption πS is at most weaker than the guarantee πT .

Example 7. Consider our refined system specifications shown in Fig. 5 and their composition shown in
Fig. 7. Compatibility of the specifications RefinedResearcher and RefinedMachine means, for instance, that
in the (syntactically) reachable state (s′1, t

′
0), every call to coin(x) of RefinedResearcher must be accepted

by RefinedMachine. In state s′1 of RefinedResearcher , there is the may transition

(s′1, [x = 0.5 ∧m ≤ 3]coin(x)![m′ ≥ m+ x], s′1) ∈ ∆may
RefinedResearcher

2We still follow the “pessimistic” approach to compatibility as discussed in Sect. 3.
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We can find a must transition in RefinedMachine,

(t′0, [x = 0.5 ∨ x = 1]coin(x)?[m′ = m+ x], t′0) ∈ ∆must
RefinedMachine

and we have to check the conditions on the predicates. But both

� (x = 0.5 ∧m ≤ 3)⇒ (x = 0.5 ∨ x = 1)

and
� (x = 0.5 ∧m ≤ 3) ∧ (x = 0.5 ∨ x = 1) ∧ (m′ = m+ x)⇒ (m′ ≥ m+ x)

are satisfied. The other transitions with shared operations can be checked analogously. Thus

RefinedResearcher �d RefinedMachine

and one can also verify that the abstract specifications are compatible as well, i.e. Researcher �d Machine.

Lemma 8. Let S, S′, T be MIODs such that S and T are composable. If S′ ≤md S then for each reachable
state (s′, t) ∈ R(S′ ⊗d T ) there exists a state s ∈ StS such that (s, t) ∈ R(S ⊗d T ) and s′ ≤md s.

Proof. Reachability of (s′, t) in S′ ⊗d T implies that there exist transitions

((s′0, t0), `′0, (s
′
1, t1)), ((s′1, t1), `′1, (s

′
2, t2)), . . . , ((s′n−1, tn−1), `′n−1, (s

′
n, tn)) ∈ ∆may

S′⊗dT
, n ≥ 0,

such that s′0 = initS′ , t0 = initT , s′n = s′ and tn = t. Then, by the rules of composition, there exist
transitions

(s′0, k
′
0, s
′
1), (s′1, k

′
1, s
′
2), . . . , (s′n−1, k

′
n−1, s

′
n) ∈ ∆may

S′

such that, for all 0 ≤ i ≤ n, `′i and k′i involve the same operations. From our assumption S′ ≤md S it follows
that initS′ ≤md initS . By induction on the length n ≥ 0, and there exist transitions

(s0, k0, s1), (s1, k1, s2), . . . , (sn−1, kn−1, sn) ∈ ∆may
S

such that s0 = initS , and for all 0 ≤ i ≤ n, s′i ≤md si and ki and k′i involve the same operations. It follows
that there exist transitions

((s0, t0), `0, (s1, t1)), ((s1, t1), `1, (s2, t2)), . . . , ((sn−1, tn−1), `n−1, (sn, tn)) ∈ ∆may
S⊗dT

.

Hence sn ∈ StS demonstrates that there exists s ∈ StS such that (s, t) is reachable in S ⊗d T and s′ ≤md s.
�

Compatibility of MIODs is preserved by refinement:

Theorem 9. Let S, S′, T, T ′ ∈Md be MIODs such that S and T are composable. Then S �d T , S′ ≤md S
and T ′ ≤md T imply S′ �d T

′.

Proof. Obviously, it suffices to prove that S �d T and S′ ≤md S imply S′ �d T .
Let (s′, t) ∈ R(S′ ⊗d T ) be a reachable state in S′ ⊗d T , and assume that there exists a transition

(s′, [ϕ]op![π]S′, ṡ′) ∈ ∆may
S′ with op ∈ Oreq

S′ ∩Oprov
T ′ . By Lemma 8, there exists a state s ∈ StS (s, t) ∈ R(S⊗dT )

and s′ ≤md s. From s′ ≤md s it follows that there exists N ≥ 0 and transitions (s, [ϕS,i]op![πS,i], ṡi) ∈ ∆may
S ,

0 ≤ i ≤ N , such that � ϕS′ ⇒
∨
i ϕS,i and for all i, � ϕS′ ∧ ϕS,i ∧ πS,i ⇒ πS′ . We already know

(s, t) ∈ R(S ⊗d T ), hence by compatibility of S and T , for each i, there exists Mi ≥ 0 and transitions
(t, [ϕT,k]op?[πT,k], ṫk) ∈ ∆must

T , 0 ≤ k ≤Mi, such that � ϕS,i ⇒
∨
k ϕT,k and for all (t, [ϕT ]op?[πT ], ṫ) ∈ ∆may

T ,
� ϕS,i ∧ ϕT ∧ πT ⇒ πS,i. We can conclude that

� ϕS′ ⇒
∨

0≤i≤N

∨
0≤k≤Mi

ϕT,k.
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Moreover, for any (t, [ϕT ]op?[πT ], ṫ) ∈ ∆may
T , we already know that

� ϕS′ ⇒
∨
i

ϕS,i

� ϕS′ ∧ ϕS,i ∧ πS,i ⇒ πS′ for all i

� ϕS,i ∧ ϕT ∧ πT ⇒ πS,i for all i

and thus we can conclude that � ϕS′ ∧ ϕT ∧ πT ⇒ πS′ is satisfied.
The second part can be proven in a similar way. �

Example 8. This result allows us to infer compatibility of the refined specifications RefinedResearcher and
RefinedMachine (see Fig. 5) by just proving (1) compatibility of the abstract specifications (see Fig. 4), and
(2), that there is a refinement relation between each abstract specification and its refinement.

We now define a semantic compatibility notion. Compatibility between GIOs requires that in any
reachable state of the product S ⊗G T of two GIOs I and J , if one GIO wants to issue an output (in its
current control state) with guard ν, and ν matches with the data state of the receiving GIO, then the
receiving GIO is in a state where it is able to take the corresponding input.

Definition 17 (Compatibility of GIOs). Let I and J be two composable GIOs. I and J are compatible,
denoted by I �G J , iff for all reachable states ((cI , cJ), σI · σJ) ∈ R(I ⊗G J),

1. for all op ∈ Oreq
I ∩O

prov
J and all νJ ∈ D(V req

J ), if there is a transition ((cI , σI), [νI ](op, ρ)!, (c′I , σ
′
I)) ∈ ∆I

and (σI · νI)|(VI∩VJ ) = (σJ · νJ)|(VI∩VJ ) then there exists ((cJ , σJ), [νJ ](op, ρ)?, (c′J , σ
′
J)) ∈ ∆J ;

2. symmetrically for all op ∈ Oreq
J ∩Oprov

I .

For showing preservation of compatibility by the implementation relation we first have to prove that any
reachable state in a correct implementation is related to a state in its specification.

Lemma 10. Let S and T be MIODs such that S and T are composable. Let I and J be GIOs such that
I ∈ JSK and J ∈ JT K. Then for each reachable state ((cI , cJ), σI · σJ) ∈ R(I ⊗G J) there exist states s ∈ StS
and t ∈ StT such that (cI , σI) / s and (cJ , σJ) / t.

Theorem 11. Let S and T be composable MIODs, and let I ∈ JSK and J ∈ JT K be GIOs. Then S �d T
implies I �G J .

Proof. Let ((cI , cJ), σI · σJ) be a reachable state in I ⊗G J . By Lemma 10 there exist states s ∈ StS and
t ∈ StT such that (cI , σI) / s and (cJ , σJ) / t.

Assume that there is a state νJ ∈ D(V req
J ) and a transition

((cI , σI), [νI ](op, ρ)!, (c′I , σ
′
I)) ∈ ∆I

such that (σI · νI)|(VI∩VJ ) = (σJ · νJ)|(VI∩VJ ) and op ∈ Oreq
S ∩ Oprov

T . From (cI , σI) / s it follows that
there exists a transition (s, [ϕS ]op![πS ], s′) ∈ ∆may

S such that (σI · νI ; ρ) � ϕS and (c′I , σ
′
I) / s

′. Then, by
compatibility S �d T , there exists N ≥ 0 and transitions (t, [ϕT,i]op?[πT,i], t

′
i) ∈ ∆must

T , 0 ≤ i ≤ N , such
that � ϕS ⇒

∨
i ϕT,i. We already know that (σI · νI ; ρ) � ϕS , then also (σI · σJ · (νI · νJ)|(VI⊗VJ )req ; ρ) � ϕS .

Hence there is some j, 0 ≤ j ≤ N , such that (σI · σJ · (νI · νJ)|(VI⊗VJ )req ; ρ) � ϕT,j . From (cJ , σJ) / t it
follows that there exists a transition

((cJ , σJ), [νJ ](op, ρ)?, (c′J , σ
′
J)) ∈ ∆J .

This was to be shown. The other direction is symmetric. �
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9. Relating Interface Theories

In the following we collect the results of the previous sections and define interface theories and their
relations. The first result is that our framework of MIODs is compositional; hence MIODs together with
composition, refinement, and compatibility form an interface theory.

Corollary 12. (Md,⊗d,≤md,�d) is an interface theory.

Proof. Compatibility trivially implies composability: S �d T implies that S and T are composable, hence
S⊗dT is defined. Compositional refinement has been proven in Theorem 6 and preservation of compatibility
has been proven in Theorem 9. �

Next, the class of all GIOs together with set inclusion as refinement relation, and pointwise composition
and compatibility, as defined in Sect. 7 and 8, form an interface theory.

Theorem 13. (P(G), ⊗̂G ,⊆, �̂G) is an interface theory.

Proof. We have to show all three requirements an interface theory has to satisfy. The first condition,
compatibility implies composability, it satisfied: M�̂GN , for M,N ∈ P(G), implies that every I ∈ M ,
J ∈ N are composable, hence M⊗̂GN is defined. The second and third conditions are trivially satisfied
since refinement is set inclusion. �

Now we relate the introduced interface theories and establish (weak) interface theory morphisms between
them. The interface theory IMd

with MIODs as specification domain can be related to their formal semantics
by a weak interface morphism to IP(G), mapping any MIOD S to the class JSK of all correct implementations
of S.

Corollary 14. The mapping

j : Md → P(G)

S 7→ JSK

is a weak interface theory morphism from IMd
to IP(G).

Proof. This follows from Proposition 5, Theorem 7 and Theorem 11.

To give an overview of the introduced interface theories we study their correspondences by defining
interface theory morphisms between them. First, for the embedding of MIOs into MIODs, we have to define
how a set of actions (partitioned into input, output and internal actions) are mapped to operations. Given
such a set of actions Act = Act in ]Actout ]Act int , the I/O-signature for Act , denoted by Σ(Act), is (∅,Act)
which is defined by Oprov = Act in , Oreq = Actout , Oint = Act int , and par(a) = ∅ for each a ∈ Act .

We define an interface theory morphism f for the mapping of MIOs to MIODs. f is defined as follows:
f :M−→Md maps any S ∈M to f(S) ∈Md such that

f(S) = (Σf(S),Stf(S), initf(S), ϕ
0
f(S),∆

may
f(S),∆

must
f(S))

where Σf(S) = Σ(ActS), Stf(S) = StS , initf(S) = initS , ϕ0
f(S) = true, and

∆γ
f(S) = {(s, [true]a[true], s′) | (s, a, s′) ∈ ∆γ

S}, for γ ∈ {may,must},

where true is the universally valid state predicate (transition predicate, resp.) over S(∅, ∅) (T (∅, ∅, ∅), resp.).

Lemma 15. f is an interface theory morphism from IM to IMd
.
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Next, we define an interface theory morphism g from IP(Mmust) to IP(G). Let ε denote the function
with empty domain. The function g : P(Mmust) −→ P(G) is defined by g(M) = {Iε | I ∈ M} where
Iε = (Σ(ActI),StI ×D(∅), (initI , ε),∆Iε), and

∆Iε = {((s, ε), [ε](a, ε), (s′, ε)) | (s, a, s′) ∈ ∆I}.

Lemma 16. g is an interface theory morphism from IP(Mmust) to IP(G).

Finally, we get the diagram in Fig. 8. The interface theory morphism i has been introduced in Sect. 3
(see Theorem 4) and maps any MIO S to its implementation semantics JSK.

IM
f //

i
��

IMd

j
��

IP(Mmust) g
// IP(G)

Figure 8: Relating interface theories by interface theory morphisms.

Theorem 17. The diagram in Fig. 8 commutes, i.e. j ◦ f = g ◦ i.

Proof. For proving j ◦ f = g ◦ i one has to show that, given a MIO S, modal refinement of S (and adding
empty data states according to g) coincides with the semantics of Jf(S)K consisting of all implementations
of f(S). This is, however, easy to prove.

10. Conclusion

We have proposed a formalism for the specification and implementation of interfaces for interacting,
concurrent components which integrates the aspects of control flow and evolving data states. Specifications
are represented by modal I/O-transition systems with data constraints (MIODs), implementations are for-
malized in terms of guarded input/output transition systems (GIOs) which involve concrete data states.
We have studied refinement and compatibility of specifications by taking into account a contract-oriented
view and we have shown that MIODs form an interface theory: compatibility is preserved by refinement and
refinement is preserved by synchronous composition of MIODs. Since modal specifications are inherently
loose, we have adopted a loose semantics for MIODs where any MIOD is interpreted by the class of its correct
implementations. The correctness notion is defined by a particular simulation relation between MIODs and
GIOs which relates not only control states but also data constraints of a specification with concrete data
states of an implementation. We have shown that our semantics is compositional in the sense that locally
correct implementations of compatible MIODs are compatible as well and compose to a globally correct
implementation of the composed MIODs. On the specification level, our approach is independent from a
particular assertion language for pre- and postconditions and, on the implementation level, it is independent
from a particular programming language notation. Of course, the instantiation to appropriate subsets of
concrete languages, like OCL for assertions, UML for protocols, and concurrent Java for implementations is
an interesting objective of further research.

Moreover, we are interested in better symbolic approximations of the semantic refinement and compati-
bility notions. Concerning compatibility, for instance, we want to investigate techniques to remove reachable
states of MIODs and MIOD compositions which are not related to semantically reachable states. Concerning
the expressive power of MIODs it would be desirable to integrate critical regions which would allow stepwise
verification of data constraints along transitions within critical parts.

Further important issues are to extend our framework by taking into account weak versions of refinement
and compatibility abstracting away not only internal actions, as done for MIOs in [21, 4], but also internal
state variables and the application of our theory to a particular component model.
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