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Interface specifications play an important role in component-based software development. An inter-
face theory is a formal framework supporting composition, refinement and compatibility of interface
specifications. We present different interface theories which use modal I/O-transition systems as
their underlying domain for interface specifications: synchronous interface theories, which employ a
synchronous communication schema, as well as a novel interface theory for asynchronous commu-
nication where components communicate via FIFO-buffers.

1 Introduction

The idea of an interface theory is to capture basic requirements that any formalism should obey which is
intended to support the design of components and component systems. Since system development usu-
ally concerns two dimensions, a horizontal dimension where larger components are built from smaller
ones, and a vertical dimension, where interface specifications are successively refined (and finally imple-
mented), an interface theory requires concepts of composition, refinement and compatibility. Of course,
it is important that the different dimensions of system development fit properly together. Therefore an
interface theory requires (at least) that refinement is preserved by composition and that compatibility of
interfaces is preserved by refinement, which is needed for independent implementability and reusability
of components.

A formal notion of an interface theory was, to our knowledge, first proposed by de Alfaro and Hen-
zinger in [2]]. In their work, an interface theory consists of an interface algebra together with a component
algebra thus distinguishing between interface specifications and component implementations. Later, in
[3], the authors have introduced the term interface language which simplifies the approach by consid-
ering just interfaces with the requirements that incremental design and independent implementability
is possible. Interface theory and interface language are abstract concepts which can be instantiated by
concrete formalisms. The (abstract) notion of an interface theory we shall use hereafter is close to an in-
terface language but further simplified by concentrating on the two rudimentary requirements mentioned
above which guarantee independent implementability and which we want to study for particular interface
theories supporting synchronous as well as asynchronous composition.

All interface theories studied in this work use modal I/O-transition systems (MIOs), introduced by
Larsen et al. [L1]], [12]], as underlying formalism for interface specifications. MIOs are well suited to
describe behavioural properties of reactive components. They allow to distinguish between transitions
which are optional or mandatory for refinements and thus support loose specification and stepwise devel-
opment. We first summarize our previous work on interface theories [6] which was based on synchronous
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2 Interface Theories for (A)synchronously Communicating Modal 1/O-Transition Systems

composition of MIOs. We discuss strong and weak versions of refinement and compatibility and we
show that both versions lead to an interface theory. Then we extend our previous work and consider
asynchronous composition of MIOs which communicate via output queues. We introduce the notion of
asynchronous compatibility which requires that each message put in the output queue of a MIO must
eventually be taken by its communication partner which is related to the requirement of specified recep-
tion in communicating finite state machines [8]. We show that MIOs with asynchronous composition,
asynchronous compatibility and weak refinement form again an interface theory. Finally, we discuss
possibilities for verification and further directions of our work.

2 Interface Theories for MIOs with Synchronous Composition

In our study the abstract concept of an interface theory defines rudimentary properties that should be
satisfied by any formal framework for interface specifications. Given a class & of interface specifica-
tions, an interface theory includes a partial composition operator ® to combine specifications to larger
ones. The composition operator is, in general, partial since it is not always syntactically meaningful to
compose specifications. Interface specifications for which the composition is defined are called com-
posable. Additionally, an interface theory must offer a refinement relation < to relate “concrete” and
“abstract” specifications, and a compatibility relation < to express when two interface specifications
describe components which can work properly together. In contrast to (syntactic) composability, com-
patibility has a semantic flavour related to the behaviour of components. To obtain an interface theory,
three requirements must be satisfied. Obviously, compatible specifications must be syntactically com-
posable. Moreover, refinement must be compositional in the sense that it must be preserved by the
composition operator and, third, compatibility must be preserved by refinement.

Definition 1 (Interface Theory). An interface theory is a tuple (o7 ,®,<,=) consisting of a class </
of interface specifications, a partial composition operator @ : o/ x of — o, a reflexive and transitive
refinement relation < C o x o/, and a symmetric compatibility relation = C o x <f, such that the
following conditions are satisfied. Let S,S',T,T’ € </ be interfaces.

(1) (Compatibility implies composability) If S = T then S® T is defined.

(2) (Compositional refinement) If S’ < Sand T' < T and SR T is defined, then S' @ T' is defined and
ST'<S®T.

(3) (Preservation of compatibility) If S= T and S' < Sand T' < T, then ' = T'.

Obviously, in a top-down design, the requirements for an interface theory expressed by conditions
(1) to (3) support independent development of components and thus independent implementability in
the sense of [3]. To a certain extent an interface theory supports also bottom-up design, where existing
components can be reused as parts of a larger system architecture, as long as local refinements are correct
and local interfaces fit into the context.

In the following we will study particular interface theories which all use modal I/O-transition sys-
tems (MIOs) as their underlying formalism for interface specifications. Modal I/O-transition systems
have been introduced by Larsen et al. [[11]], [12] as a formalism to describe the behaviour of reactive,
concurrent components. MIOs distinguish between may- and must-transitions, where the former model
allowed behaviour, which may or may not be present in a refinement, whereas the latter model required
behaviour to be preserved by any refinement. Thus MIOs support loose specifications and flexible no-
tions of refinement.
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Definition 2 (MIO). A modal I/O-transition system (MIO) S = (statesg, starts,acts, --+ P S) consists
of a set of states statess, an initial state starts € statess, a set acts of actions being the disjoint union
of sets ins, outs and ints of input, output and internal actions resp., a may-transition relation --+, C
statess X acts X statess, and a must-transition relation — ¢ C --», i.e. every required transition is also
allowed. The set acts of actions together with its partition into input, output and internal actions is called
the signature of S.

. a . . ..
As usual, we write s--+¢ s’ instead of (s,a,s") € --», and similarly for must-transitions. A state

. . . .. ap aj Aap—1
s € statesg of S is called reachable if there exist may-transitions so--+¢§1--+g ...==*¢ 8y, n > 0, such

that s, = 5. The class of modal I/O-transition systems is denoted by .. ItSprovides the underlying
domain of specifications for all interface theories considered in the following.

Two MIOs S, T € . are (syntactically) composable if their actions only overlap on complementary
types, i.e. actsNacty C (ingNoutr) U (iny Nouts). The set of shared actions acts Nacty is denoted
by shared(S,T). The synchronous composition of two composable MIOs S and 7 is defined as the
usual product of transition systems with synchronization on shared actions which become internal in the
product. A synchronization transition in the composition is a must-transition only if both of the single

synchronized transitions were must-transitions.

Definition 3 (Synchronous composition). Let S,T € .# be two composable MIOs. The synchronous
composition of S and 7 is the MIO S ®y, T = (statess X statest, (starts, startr),act,--+» ,— ) where the
action alphabet act is the disjoint union of the input actions (insUiny ) \ shared(S,T), the output actions
(outs U outr) \ shared(S,T ), and the internal actions ints U inty Ushared(S,T). The transition relations
are the smallest relations satisfying:

e forall a € shared(S,T),
- ifs—c—l»S s’ andt—f+T t', then (s,1)-2 (s',1),
- ifs—"5 5" and t—"5 1, then (s,1)—" (s,1),
e forall a € actg ~ shared(S,T),

- ifs—(jas s/, then (s,1)-%+ (s',1) for all t € statesr,

a

— if s—5 g5, then (s,t)— (s',t) for all t € statesr,

e forall a € actr ~ shared(S,T),

- ift—ﬁeT t', then (s,t)--» (s,t') for all s € statess,

- ift—"5,t', then (s,t)— (s,1") for all 5 € statess.

The basic idea of modal refinement is that required (must) transitions of an abstract specification
must also occur in the concrete specification. Conversely, allowed (may) transitions of the concrete spec-
ification must be allowed by the abstract specification. We distinguish between strong modal refinement,
due to [12] and denoted by <,,, and weak modal refinement, due to [9] and denoted by <}, which are
both defined in terms of a simulation relation. While in the strong case every transition must be simu-
lated “immediately”, weak refinement allows to abstract from transitions with internal actions. We only
review the formal definition of the latter here. In the following, the successive execution of arbitrarily
many internal must-transitions is denoted by —%5*, and similarly for may-transitions.

Definition 4 (Weak modal refinement). Let S and T be MIOs with the same signature. S weakly modally

refines T, written S <}, T, if there exists a relation R C statess X statest containing (startg, starty) such
that for all (s,t) € R:
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1) Va € inyp Uouty : t—5 1 = Fs—% 55 55 S A(s',1') €R,
T s s s
(2) Ya€inty: t—5,1' = Is—55 A(s',1') €R,
T — =T
3) Ya€ingUoutr : s-23os = -2 722 -3t A (s',t') ER,
s T T T
T
(4) Va € ints : s—fess’ = J1--2. ' N (s',I') ER.

In conditions (2) and (4), a is an internal action which must be simulated by a sequence of arbitrarily

. . T . .
many internal actions (denoted by S N resp.). This sequence may be empty but the important

point is that the original transition with @ must stay in the relation R.

Our notion of strong modal compatibility is inspired by [3]] and [11]]. Two MIOs S and T are strongly
modally compatible, denoted by S =, T, if they are composable and if for each reachable state (s,7) in
the composition S ®;, T, if § may send out in state s an action shared with 7', then T must be able to
receive it in state ¢, and conversely. The difference to [3] and [11] is that we consider the “pessimistic”
case, where MIOs should work properly together in any composable environment while the “optimistic”
approach, pursued in [3] and [11]], requires the existence of a (helpful) environment; for a discussion
see [L].

Strong modal refinement is compositional w.r.t. the synchronous product [12] and preserves strong
modal compatibility [6]. Thus we obtain a first interface theory. The detailed proof can be found in [7].

Theorem 1. (A ,®yy, <;, =) is an interface theory.

Weak modal refinement, however, does not preserve strong modal compatibility due to the possible
insertion of internal transitions in the refinement; see [6] for a counterexample. Therefore, we have intro-
duced in [6] a weak version of compatibility such that a communication partner can delay the reception
of a message by performing some internal must-transitions before.

Definition 5 (Weak modal compatibility). Two MIOs S and T are weakly modally compatible, denoted
by S 2. T, if they are composable and if for all reachable states (s,t) in S ®y, T,

. a —
a€outsNing : s—-+o8 = It —5 -2 ¢/,
1) Ya € outsN PE It T r
. a _
a € outy Ning: t-—+. ' = s —% 5-L5 s
2) Va € outy N t-—>pt' =3 S s

Since weak modal refinement is compositional w.r.t. the synchronous product [9] and preserves weak
modal compatibility [6] we obtain a second interface theory. For a detailed proof see again [7].

Theorem 2. (A ,®sy, <), Zwc) is an interface theory.

All kinds of refinement and synchronous compatibility notions considered here are decidable for
finite MIOs and can be efficiently computed in time polynomial in the size of the MIOs. For further vari-
ants of interface theories with synchronous composition and for an introduction of the MIO Workbench
for refinement and compatibility checking see [6].

3 An Interface Theory for MIOs with Asynchronous Composition

In distributed applications, implemented, for instance, with a message-oriented middleware, usually an
asynchronous communication pattern is used. To obtain an interface theory for this kind of systems
we change the composition operator and focus on components which communicate via FIFO-buffered
message queues. In Fig.[T|two asynchronously communicating MIOs S and T are schematically depicted:
S sends a message n to T by putting it into a queue which stores the outputs of S, and then T can receive
n by removing n from the queue. Obviously, there is a delay between sending and reception. Similarly,
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Figure 1: Asynchronously communicating MIOs
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Figure 2: MIO with output queue

T can send a message m to S by using a second queue which stores the outputs of 7. Technically,
we enhance MIOs by output queues which are themselves modelled as MIOs. Given a MIO S and a
distinguished subset o C our of the output actions of S, the MIO § “with output queue for the messages
in 0” is modelled by the synchronous product of a renamed version of S (where all n € o are renamed
to n”) and the “queue MIO” Q, which is able to store messages of o. Fig. [2| shows the idea of this
construction where S* denotes the renamed version of S.

Definition 6 (MIO with output queue). Given a set o of output actions, the queue MIO for o is Q, =
(0o*,€,act,--+ ,— ) where the set of states 0* is the set of all finite strings over o, the initial state € € 0*
is the empty string, and the set of actions act is the disjoint union of input actions in={n" | n € o}, output
actions out = o and with no internal action. Moreover, --+ — — and the must-transition relation —
is the smallest relation such that

>
e forall n® € in and states s € 0* : s——ns,

e foralln € out (= 0) and states s € 0* : sn—s.

Given a MIO S with actions acts = ing U outs U ints and a distinguished set o C outs of output actions, the
MIO S with output queue for o is given by the synchronous product Q,(S) = S5 ®s, Q, (where S;; denotes
the renamed version of S where all n € o are renamed to n” ). Obviously, the product is well-defined since
S> and Q, are composable.

By the rules of synchronous composition the input and the output actions of Q,(S) coincide with
those of S; an output n of Q,(S) means that the message n is either a free output of S or it is removed
from the output queue of S. The synchronization actions n” of Q,(S) express that the message n is put
by S (more precisely by S5) in the queue.

To define the asynchronous composition of two MIOs S and 7', we assume again that S and T are
composable. Then one can equip S with an output queue for those outputs og of S which can be received
by T, i.e. which are shared actions. The other output actions of S remain free. Similarly 7 is equipped
with an output queue for its shared output actions or. Obviously, since S and T are composable, Q,(S)
and Q,,(T) are composable as well. Hence, two composable MIOs S and T can be asynchronously
composed by synchronously composing their extensions by output queues.
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Definition 7 (Asynchronous composition). Let S,T be two composable MIOs and os = outs Niny, oy =
outr Ning. The asynchronous composition of S and T is defined by S Qa5 T = Q0(S) Ry Qo (T).

We consider two composable MIOs S and T to be asynchronously compatible, if for each reachable
state in S ®,4; T, if the output queue of S is not empty, then 7 must be able to take (i.e. input) the next
removable element of the queue possibly after some internal must-transitions, and conversely. Obviously,
due to the use of output queues (instead of input queues), this idea can be easily formalized with the help
of weak modal compatibility as defined in the synchronous case.

Definition 8 (Asynchronous modal compatibility). Two MIOs S and T are asynchronously modally
compatible, denoted by S =, T, if they are composable and if, for os = outs Niny, or = outy Ning,
Qi (S) Fe Qog (T).

S out={m} in={m"} T
N < m | m | |&
v in={n"} out = {n} v

Figure 3: Example of asynchronously communicating MIOs

As a simple example consider the two MIOs S and T depicted in Fig. [3] where input actions are
marked with “?”” and output actions with “!”, i.e. ing = outr = {m} and outs = iny = {n}. S has the tran-
sitions starts—s s— starts, and T has the transitions starty —st— startr. S and T are asynchronously
compatible, since each communication partner must take the provided message after it has put its own
issued message in its queue (which is an internal must-transition in Q,(S) and Q,, (T') resp.). Note
that S and 7" are obviously neither strongly nor weakly modally compatible which shows the flexibility
of the asynchronous compatibility concept. The other way round it is shown in [10] that, under certain
conditions like input separated states, weak compatibility implies asynchronous compatibility.

The behaviour described by the asynchronous composition of MIOs coincides with the operational
model of communicating finite state machines (CFSMs); see [8]. In [8] it is required that a system
of CFSMs should be well-formed. One part of the well-formedness condition requires that executable
receptions should be specified, which is just the strong version of the asynchronous compatibility notion
used here. The other direction of the well-formedness condition requires that specified receptions should
be executable. This corresponds to a kind of “input” compatibility which we have not considered here,
since, in general, it would not be necessary that any service offered by a component must actually be
used. Another difference to CFSMs is that we consider a binary (asynchronous) composition operator
but allow open systems, while in the CFSM approach closed networks of CFSMs are considered.

To obtain an interface theory with asynchronous composition we still have to choose an appropriate
refinement notion. After a closer look it becomes obvious that refinement is not really related to the com-
munication paradigm, since refinement concerns the vertical dimension of software development moving
from abstract to more concrete abstraction levels, whereas composition is related to the horizontal dimen-
sion where larger systems are constructed from smaller ones and where the underlying communication
schema is crucial. Hence, we can simply reuse the powerful notion of weak modal refinement which
leads to an interface theory for MIOs with asynchronous composition.

Theorem 3. (A, R4, <), ac) is an interface theory.
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Proof. The proof relies on the previous results for the synchronous case, since the asynchronous notions
have been defined in terms of the synchronous ones. As a first observation, we show that for any two
MIOs S and S’ and for any subset o of output actions of S and of S,

S < S = Q,(8) <k, Q,(S). )]

Since weak modal refinement is compositional, by Thm. 2} §" <} S implies S’ ®y, 0, <}, S @5, Q,. Hence,
by definition, Q,(S") = SI” @y, Qp <y ST R4y Qo = Q,(S).
We can now prove that the conditions (1) - (3) of an interface theory are satisfied.

(1) Asynchronously compatible MIOs are, by definition, composable.

(2) Compositionality of refinement: Assume that &' <! S, 7' <! T and that S ®,, T is defined, i.e. S
and T are composable. Since weak modal refinement <}, does not change signatures, S’ and T’ are
composable as well, i.e. & ®,; T’ is defined.

We have to show that §' ®,, T’ <, S ®,s T which means, by definition,
Qoy () D5y Qo (T') <5 Qo (S) @y Qo (T) an

where oy = outy Niny/, o7 = outy Ning, 0s = outsNiny, and oy = outy Ning. First, S’ <} S implies
that S and S’ have the same signature; the same holds for 7" and T". Therefore, oy = os and 077 = or.
By (I), 8’ <;, Sand T" <; T implies Qo (S') <i;, Qs (S) and Q,, (T") <, Qo (T), respectively. Then,
follows from compositionality of <;, w.r.t. synchronous composition ®j,, see Thm. [2} taking into
account og = og and o7 = or.

(3) Preservation of compatibility under refinement: Assume that S =, 7, S’ <! S and T’ <! T. By
definition, S =, T means Q, (S) e Qo, (T). From () we know that &' <}, S implies Q,,(S") <},
Q,,(S) and T' <}, T implies Q,,(T") <} Q,,(T). By Thm. 2| =, is preserved under <} and
therefore Q,(S") Z e Qop (T7). Thus Q,, (S') Zye Qo,, (T'), since oy = o5 and o7 = or as above.
This means, by definition, S’ =, T'.

O]

4 Conclusion

We have studied interface theories based on modal I/O-transition systems (MIOs) with synchronous
and with asynchronous composition. We have chosen MIOs as the underlying domain for interface
specifications since they allow for a flexible refinement notion. In the synchronous case, if the underlying
MIOs are finite, strong and weak refinement as well as strong and weak compatibility are decidable and
can be efficiently checked with the MIO Workbench; see [6] and [13]. In the asynchronous case, the
buffering mechanism used for communication may lead to infinite state spaces. Concerning refinement
it is, however, still possible to derive weak refinements between composed specifications with infinite
state spaces, say S’ ®gs T' <! S®qs T, from local refinements S’ <! S and 7’ <}, T and the latter can
be decided if the local MIOs are finite. This is an important consequence of the interface theory with
asynchronous composition. The situation is different, if we consider the verification of asynchronous
compatibility which is, in general, not decidable due to the potentially infinite output queues. We are
currently working on criteria for asynchronous compatibility, which are decidable and powerful at the
same time, and on the integration of such criteria into the MIO Workbench. As an outcome of our
theoretical work, we want to apply the results to provide a solid basis for modelling hierarchical and
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asynchronously communicating components in the context of the Unified Modeling Language (UML).
At the same time we are also interested in interface theories for components with local data states [5, 4]
and for timed systems.

Acknowledgement. An important input for this study was the suggestion of Alexander Knapp to use
output queues (instead of input queues) for the formalization of asynchronous compatibility. We are
grateful to Alexander for this very valuable hint.
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